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Trusted execution of ML: 3 motivating scenarios
1. Outsourced ML

Data Privacy

Integrity
- Model “downgrade”
- Disparate impact
- Other malicious tampering



Trusted execution of ML: 3 motivating scenarios
2. Federated Learning

Integrity
Need integrity of 
computation and data 
collectionData privacy



Integrity
- Malware
- Trojaned hardware

Trusted execution of ML: 3 motivating scenarios
3. Infected Hosts



Solutions
• Cryptography

1. Outsourced ML: FHE, MPC, (ZK) proof systems
2. Federated learning: no countermeasure for poisoning…
3. Infected hosts: verifiable computation + some root of trust

• Trusted Execution Environments (TEEs)
1. Outsourced ML: isolated enclaves
2. Federated learning: trusted sensors + isolated enclaves
3. Infected hosts: isolated enclaves / hardware from trusted 

manufacturer



Trusted Execution: At what cost?
• Trusted ASICs (Wahby et al.): ~108�worse than SOTA
• Intel SGX:

https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a
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“How do we efficiently leverage TEEs for secure 
machine learning computations?” 

Idea: outsource work to collocated, faster but untrusted
device and verify results

Computations Required gap Privacy
Verifiable ASICs 
(Wahby et al., 2016)

Arithmetic circuits ~ 8 orders of 
magnitude

No

Slalom DNN inference ~ 1-2 orders “Yes”

x

F(x), proof
TEE



TEE

Goal + threat model

User has secure 
communication 

channel with TEE

Adversary controls the rest of 
the software / hardware stack

The model is known to the adversary 
(but not necessarily to the client)

Goal: Efficiently run DNN inference F(x)
- Integrity: User obtains F(x) or aborts
- Privacy: Adversary learns nothing about x



Bottlenecks in deep neural networks

VGG16 Inference on 1 CPU core

MATRIX MULTIPLICATION

non linear stuff (cheap)

~ 97%



Outsourcing matrix multiplication: Freivald’s algorithm

Input: X ∈ "n ⨉ n , W ∈ "n ⨉ n

Direct Compute: Z = X * W
≈ n3 multiplications or O(n2.81) with Strassen

Outsource + Verify:
• Sample r ← "n  uniformly at random
• Check: Z*r = X * (W * r)
• Complexity: ≈ 3n2 multiplications
• Soundness: 1 / | " | (boost by repeating)

DNN weights. Fixed at 
inference time



Batched and preprocessed verification

Some DNN layers are *not* matrix multiplications
E.g., a dense layer is a vector-matrix product, x*W

- Compute: ≈ n2

- Freivald: ≈ 3n2 ...

Verify a batch of inputs: Z = [x1, x2, …, xB] * W
- Compute: ≈ Bn2

- Freivald: ≈ Bn + 2n2

Preprocess learned weights: W’ = W*r
- Freivald: ≈ Bn + n2

The same randomness r can 
be reused for multiple checks 

if r is kept secret from the 
adversary



Handling convolutions

Operation Multiplications
Compute Z = im2col([x1, …, xB]) * W B*N*K2*C*D

Batched verify r1 * Z * r2 = im2col(r1 * X) * (W * r2) B*N*D + B*N*C +
K2*C*D + N*K2*C

Savings even if B=1Soundness: 2 / | ! |

VGG16
• K = 3
• 3 ≤ C ≤ 512
• 64 ≤ D ≤ 512
• 142 ≤ N ≤ 2242



Preprocessing for convolutions (or arbitrary linear ops)
Linear operator: z = FA(x) = x * A

Precompute: A’ = A * r = (∇x F)(r)
Check: z * r = x * A’
Complexity: |z| + |x| multiplications

Vector of size |z| Vector of size |x|

Matrix of size |x| × |z|

Convolutions Multiplications
Compute B*N*K2*C*D
Batched verify B*N*D + B*N*C + K2*C*D + N*K2*C
Preprocessed B*N*D + B*N*C

2 inner products!

|x| = B*N*C
|z| = B*N*D

Easy to compute without 
making A explicit!



Preserving privacy
• Offline precomputation + online blinding

X

X * W
TEE

Offline: Precompute and store R, R*W



Preserving privacy
• Offline precomputation + online blinding

• Secret sharing?

X+R

(X+R) * W
TEE

Online: “one-time-pad” over !

TEE X+R

R

Can these devices be 
“collocated” yet 

“non-colluding” ?

Online: Unblind using R*W

Offline: Precompute and store R, R*W



Slalom

X1 Z1 X2 Z2

W1 W2σ σ

…F:

TEE TEE



Slalom (some details)

Quantization:

• DNNs are typically trained / evaluated in floating point

• Freivald / blinding require working over a ring/field !
• Quantize inputs & weights and work mod P (P < 224)

Integrity checks:
• Eval DNN on fast device and store inputs/outputs of all linear ops

⟹ close to no prover overhead
• Sample r from ! and do Freivald check in double precision 

⟹ verifier complexity is at least |x| + |z| double muls per linear layer

Blinding:

• Store unblinding factors R*W encrypted in untrusted memory
• In online phase, decrypt (and authenticate) R*W to unblind



Design & Evaluation
Implementation

• TEE: Intel SGX ”Desktop” CPU (single thread)
• Untrusted device: Nvidia Tesla GPU
• Port of the Eigen linear algebra C++ library to SGX

(used in e.g., TensorFlow)

Workloads:
• Microbenchmarks (see paper)
• VGG16 (“beefy” canonical feedforward neural network)
• MobileNet (resource efficient DNN tailored for low-compute devices)

• Variant 1: standard MobileNet (see paper)
• Variant 2: No intermediate ReLU in separable convolutions (this talk)

TEE



Verifiable inference
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VGG16 weights take 500MB 

so SGX has to page weights 

in and out of memory 

=> ~2-3x slowdown

Preprocessed weights W*r 

take up less memory and 

enable faster checks!

MobileNet’s weights are 

only ~10MB so they fit in 

the SGX cache

Difficult to get faster 

batched verification due to 

SGX memory limits



Verifiable and private inference
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Extra Costs
- GPU has to operate in double precision
- Decrypt all unblinding factors R*W (AES-GCM)
- Regenerate all blinding factors R (PRG using AES)



Summary

• Large savings (6x – 20x) in outsourcing DNN 
inference while preserving integrity
• Sufficient for some use-cases!

• More modest savings (3.5x – 10x) with input privacy
• Requires preprocessing



Open questions
• What other problems are (concretely) easier to verify 

than to compute?
• All NP complete problems (are those really outsourced?)
• What about something in P?

• Convex optimization
• Other uses of matrix multiplication
• Many graph problems (e.g., perfect matching)

• What about Slalom for verifiable / private training?
• Quantization at training time is hard
• Weights change so we can’t preprocess W*r for Freivald’s check
• We assume the model is public


