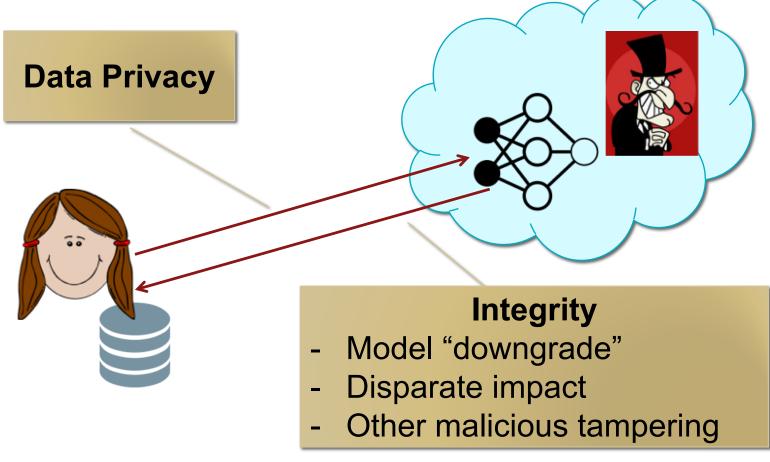
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware

Florian Tramèr (joint work with Dan Boneh)

Stanford security lunch – June 13th

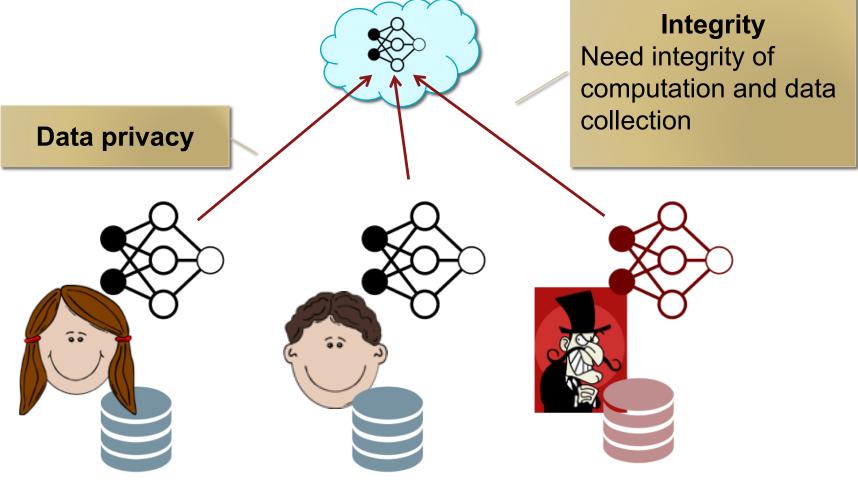
Trusted execution of ML: 3 motivating scenarios

1. Outsourced ML



Trusted execution of ML: 3 motivating scenarios

2. Federated Learning

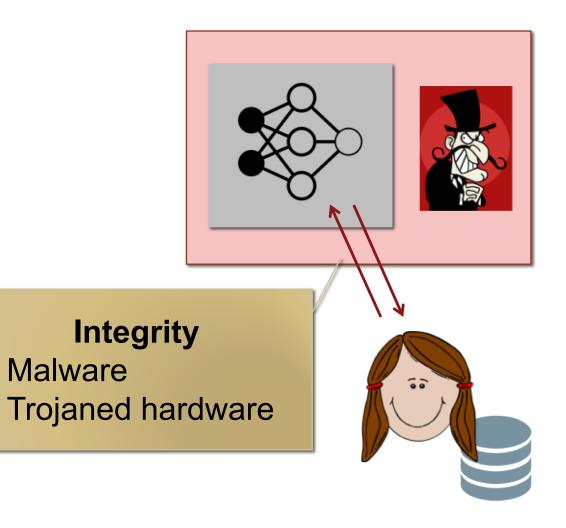


Trusted execution of ML: 3 motivating scenarios

3. Infected Hosts

_

-



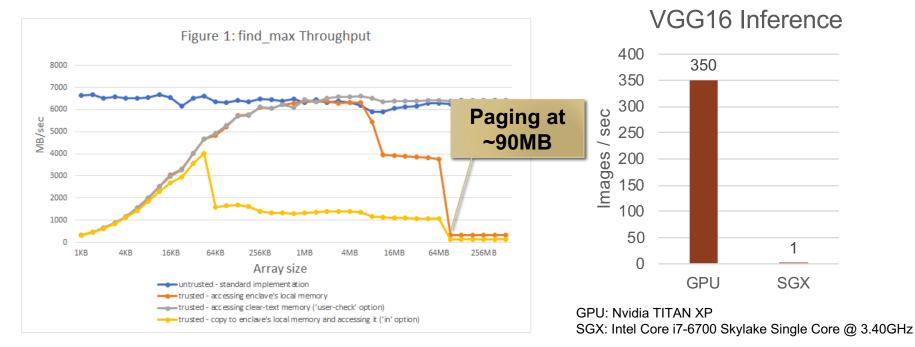
Solutions

- Cryptography
 - 1. Outsourced ML: FHE, MPC, (ZK) proof systems
 - 2. Federated learning: no countermeasure for poisoning...
 - 3. Infected hosts: verifiable computation + some root of trust

- Trusted Execution Environments (TEEs)
 - 1. Outsourced ML: isolated enclaves
 - 2. Federated learning: trusted sensors + isolated enclaves
 - 3. Infected hosts: isolated enclaves / hardware from trusted manufacturer

Trusted Execution: At what cost?

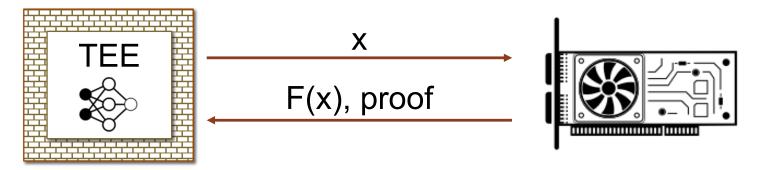
- Trusted ASICs (Wahby et al.): $\sim 10^8 \times$ worse than SOTA
- Intel SGX:



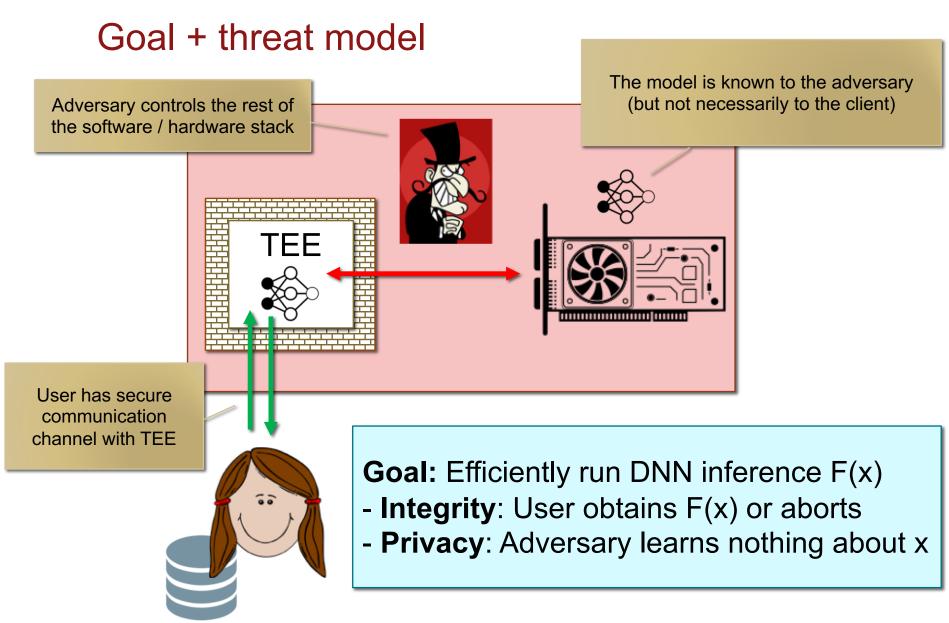
https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a

"How do we efficiently leverage TEEs for secure machine learning computations?"

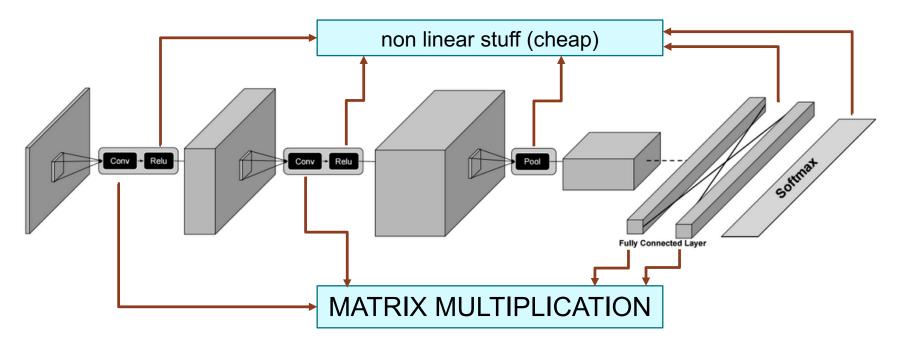
<u>Idea</u>: outsource work to *collocated*, *faster* but *untrusted* device and verify results



	Computations	Required gap	Privacy
Verifiable ASICs (Wahby et al., 2016)	Arithmetic circuits	~ 8 orders of magnitude	No
Slalom	DNN inference	~ 1-2 orders	"Yes"



Bottlenecks in deep neural networks



Name ⊽	Wall Duration ▼	
NoOp	0.006 ms	
Const	0.016 ms	
Arg	0.004 ms	
VariableV2	0.077 ms	~ 97%
Identity	0.034 ms	
Conv2D	372.828 ms	
BiasAdd	5.637 ms	
Relu	2.924 ms	
MaxPool	2.495 ms	
Totals	384.021 ms	

VGG16 Inference on 1 CPU core

Outsourcing matrix multiplication: Freivald's algorithm

Input: $X \in \mathbb{F}^{n \times n}$, $W \in \mathbb{F}^{n \times n}$

DNN weights. Fixed at inference time

Direct Compute: Z = X * W

 \approx n³ multiplications or O(n^{2.81}) with Strassen

Outsource + Verify:

- Sample $r \leftarrow \mathbb{F}^n$ uniformly at random
- Check: Z*r = X * (W * r)
- Complexity: $\approx 3n^2$ multiplications
- Soundness: 1 / | F | (boost by repeating)

Batched and preprocessed verification

Some DNN layers are *not* matrix multiplications E.g., a dense layer is a vector-matrix product, x*W

- Compute: $\approx n^2$
- Freivald: $\approx 3n^2 \dots$

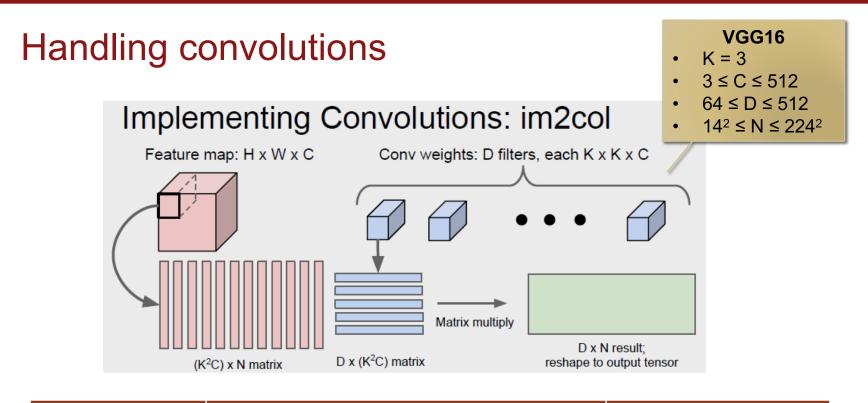
Verify a batch of inputs: $Z = [x_1, x_2, ..., x_B] * W$

- Compute: ≈ Bn²
- Freivald: \approx Bn + 2n²

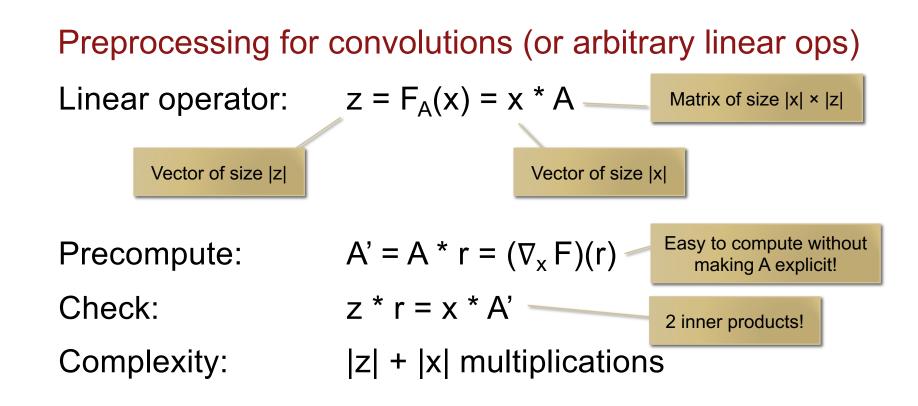
The same randomness *r* can be reused for multiple checks if *r* is kept secret from the adversary

Preprocess learned weights: W' = W*r

- Freivald: \approx Bn + n²



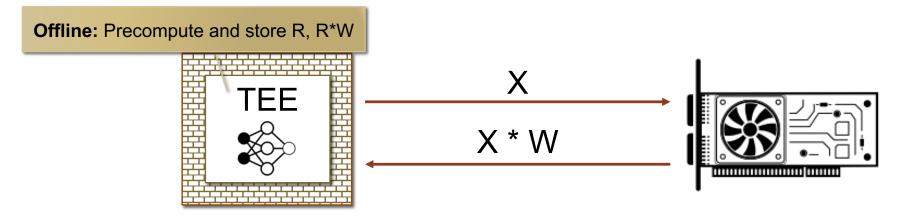
		Operation		Multiplications
	Compute	Z = im2col([x ₁ ,, x _B]) * W		B*N*K ² *C*D
	Batched verify	$r_1 * Z * r_2 = i$	B*N*D + B*N*C + K ² *C*D + N*K ² *C	
Soundness: 2 / F			Savings even if B=1	
				Stanford University



x = B*N*C	Convolutions	Multiplications
z = B*N*D	Compute	B*N*K ² *C*D
	Batched verify	B*N*D + B*N*C + K ² *C*D + N*K ² *C
	Preprocessed	B*N*D + B*N*C

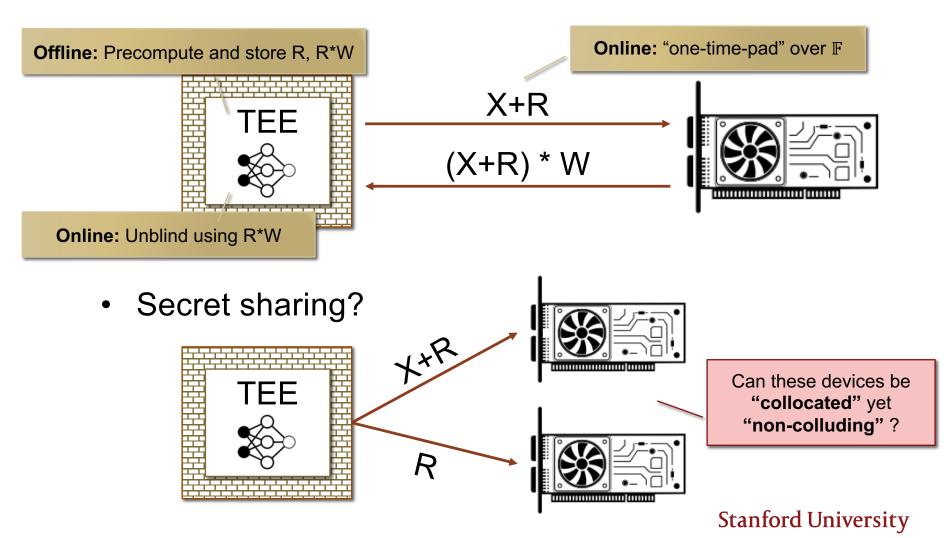
Preserving privacy

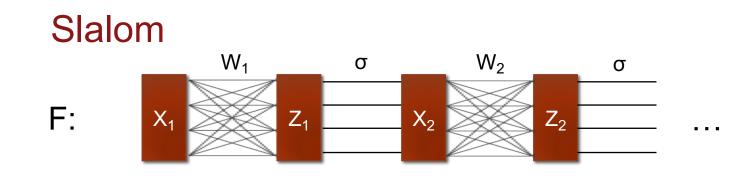
• Offline precomputation + online blinding

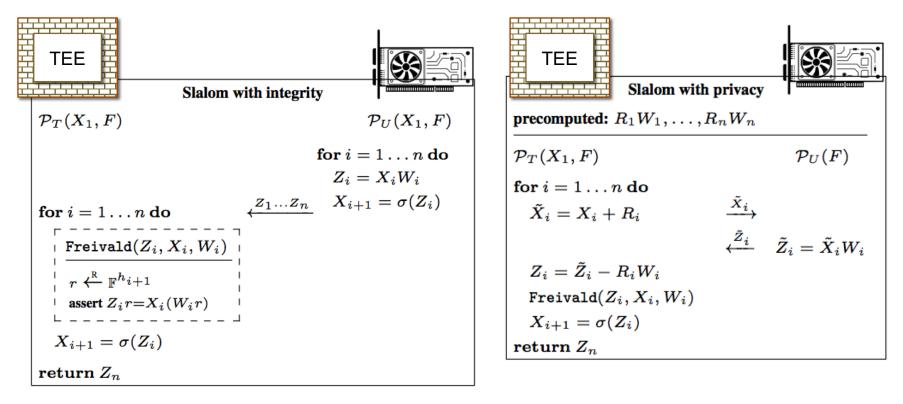


Preserving privacy

Offline precomputation + online blinding







Slalom (some details)

Quantization:

- DNNs are typically trained / evaluated in floating point
- Freivald / blinding require working over a ring/field ${\mathbb F}$
- Quantize inputs & weights and work mod P ($P < 2^{24}$)

Integrity checks:

- Eval DNN on fast device and store inputs/outputs of all linear ops
 ⇒ close to no prover overhead
- Sample r from F and do Freivald check in double precision
 ⇒ verifier complexity is at least |x| + |z| double muls per linear layer

Blinding:

- Store unblinding factors R*W encrypted in untrusted memory
- In online phase, decrypt (and authenticate) R*W to unblind

Design & Evaluation

Implementation

- TEE: Intel SGX "Desktop" CPU (single thread)
- Untrusted device: Nvidia Tesla GPU
- Port of the Eigen linear algebra C++ library to SGX (used in e.g., TensorFlow)

Workloads:

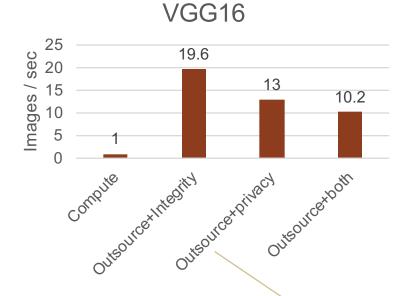
- Microbenchmarks (see paper)
- VGG16 ("beefy" canonical feedforward neural network)
- MobileNet (resource efficient DNN tailored for low-compute devices)
 - Variant 1: standard MobileNet (see paper)
 - Variant 2: No intermediate ReLU in separable convolutions (this talk)

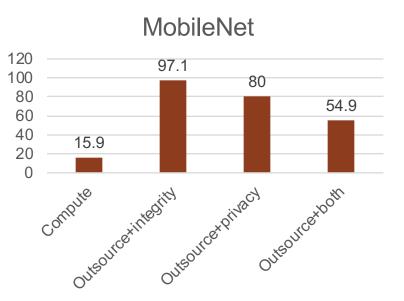
Verifiable inference

VGG16 MobileNet 25 120 97.1 19.6 100 20 Images / sec 80 15 60 10 40 30 15.9 5 20 1.7 0 0 Verify with Verify with Compute Verify Compute Verify preproc preproc VGG16 weights take 500MB Difficult to get faster so SGX has to page weights Preprocessed weights W*r batched verification due to take up less memory and in and out of memory SGX memory limits enable faster checks! => ~2-3x slowdown

MobileNet's weights are only ~10MB so they fit in the SGX cache

Verifiable and private inference





Extra Costs

- GPU has to operate in double precision
- Decrypt all unblinding factors R*W (AES-GCM)
- Regenerate all blinding factors R (PRG using AES)

Summary

- Large savings (6x 20x) in outsourcing DNN inference while preserving integrity
 - Sufficient for some use-cases!
- More modest savings (3.5x 10x) with **input privacy**
 - Requires preprocessing

Open questions

- What other problems are (concretely) easier to verify than to compute?
 - All NP complete problems (are those really outsourced?)
 - What about something in P?
 - Convex optimization
 - Other uses of matrix multiplication
 - Many graph problems (e.g., perfect matching)
- What about Slalom for verifiable / private training?
 - Quantization at training time is hard
 - Weights change so we can't preprocess W*r for Freivald's check
 - We assume the model is public