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Machine learning works.
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Machine learning works most of the time!
many applications tolerate occasional failures
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from the Bible (1 Kings 7:2)



Machine learning can also fail disastrously.

4

Critical mistakes...



Machine learning can also fail disastrously.
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Critical mistakes...

Direct attacks...



Machine learning can also fail disastrously.
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Critical mistakes...

Direct attacks...

Private data leaks...



Challenge: understand and improve the 
worst-case behavior of machine learning (ML)

Approach: I study ML from 
an adversarial perspective
Ø to improve robustness 

and privacy of ML in 
adversarial settings

Ø to build ML that is better
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My work: measuring and enhancing ML security
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Training private models (ICLR ‘21 spotlight)

Training robust models (NeurIPS ‘19 spotlight) (ICLR ‘18)
Deploying private models (ICLR ‘19 oral)

Stealing ML models (USENIX ‘16)
Microsoft’s top 3 threats to AI systems
Threat models for evasion (ICML ‘20)

Evading ML models (NeurIPS ‘20) (ACM CCS ‘19)
Influenced design changes in Adblock Plus
Extracting private data (IEEE S&P ‘21)
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Adversarial examples: a curious bug in ML
[Szegedy et al. ‘13], [Biggio et al. ‘13], [Goodfellow et al. ‘14], ...
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88% Tabby Cat 100% GuacamoleAdversarial noise



We must treat adversarial examples 
as a computer security problem.
In our threat analysis.
Identify deployed systems where adversarial 
examples can cause harms beyond misclassification

In our defense evaluations.
Evaluate robustness against adaptive adversaries

15



We must treat adversarial examples 
as a computer security problem.
In our threat analysis.
Identify deployed systems where adversarial 
examples can cause harms beyond misclassification

In our defense evaluations.
Evaluate robustness against adaptive adversaries

16



We must treat adversarial examples 
as a computer security problem.
In our threat analysis.
Identify deployed systems where adversarial 
examples can cause harms beyond misclassification

In our defense evaluations.
Evaluate robustness against adaptive adversaries

17



We must treat adversarial examples 
as a computer security problem.
In our threat analysis.

T, Dupré, Rusak, Pellegrino, Boneh (ACM CCS 2019)
Ø adversarial examples are the perfect tool to attack online content blockers
Ø using ML for ad-blocking can break Web security
Ø this work led to design changes in Adblock Plus
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100M active users



Adversarial examples are a security threat.
example: online ad-blocking

19

publishers & 
advertisers want to 

show ads to users...

...users don’t want 
to see ads



Adversarial examples are a security threat.
example: online ad-blocking

users install ad-blockers 
to remove ads...

<BLOCKED>
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Adversarial examples are a security threat.
example: online ad-blocking

users install ad-blockers 
to remove ads...
...using machine 
learning!

<BLOCKED>
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An attacker can use adversarial examples to 
evade content blocking.

adversaries (publishers 
& advertisers) modify 
content to evade 
blocking...
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...without changing 
the user’s visual 

perception of ads



23“AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning”, ACM CCS 2019

For now, the adversary wins!



Adversarial examples can cause harm 
beyond model evasion.
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Jerry uploads 
malicious 
content 

…

… so that 
Tom’s post 

gets blocked

Adblock Plus wants to run a ML model on screenshots of your 
entire Facebook feed. 

“AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning”, ACM CCS 2019



Adversarial examples are a security threat.
example: blocking undesired content
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Adversarial examples are a security threat.
example: blocking undesired content
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We must treat adversarial examples 
as a computer security problem.

27

In our threat analysis.
Identify deployed systems where adversarial 
examples can cause harms beyond misclassification

In our defense evaluations.
Evaluate robustness against adaptive adversaries



We must treat adversarial examples 
as a computer security problem.
In our defense evaluations.

T, Carlini, Brendel, Madry (NeurIPS 2020)
Ø empirical study of 13 peer-reviewed defenses (from NeurIPS, ICML, ICLR)
Ø evaluations are overly complex. Simpler attacks break each defense!
Ø new crypto-inspired attack: feature collisions
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A formal model for evaluating robustness.
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• Train a model 𝑓(#) on a distribution 𝔇 of labelled inputs 𝑥, 𝑦

• The adversary perturbs test inputs 𝑥 sampled from 𝔇 with noise 𝛿

Which perturbations 𝜹 do we allow?
- Ideal: any “semantically small” perturbation

ambiguous, hard to formalize



• Train a model 𝑓(#) on a distribution 𝔇 of labelled inputs 𝑥, 𝑦

• The adversary perturbs test inputs 𝑥 sampled from 𝔇 with noise 𝛿

Which perturbations 𝜹 do we allow?
- Ideal: any “semantically small” perturbation
- Relaxation: perturbations 𝛿 from a fixed set 𝑆

A formal model for evaluating robustness.
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necessary but not sufficient 

ambiguous, hard to formalize

Example: 𝑆 = 𝛿: 𝛿 2 ≤ 𝜀



• Train a model 𝑓(#) on a distribution 𝔇 of labelled inputs 𝑥, 𝑦

• The adversary perturbs test inputs 𝑥 sampled from 𝔇 with noise 𝛿

Which perturbations 𝜹 do we allow?
- Ideal: any “semantically small” perturbation
- Relaxation: perturbations 𝛿 from a fixed set 𝑆

Ultimate goal: 
- discover defensive techniques that generalize across perturbation sets
- learn something new about ML 

A formal model for evaluating robustness.
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Example: 𝑆 = 𝛿: 𝛿 2 ≤ 𝜀



• Train a model 𝑓(#) on a distribution 𝔇 of labelled inputs 𝑥, 𝑦

• The adversary perturbs test inputs 𝑥 sampled from 𝔇 with noise 𝛿

Which perturbations 𝜹 do we allow?
- Ideal: any “semantically small” perturbation
- Relaxation: perturbations 𝛿 from a fixed set 𝑆

A formal model for evaluating robustness.

32

Example: 𝑆 = 𝛿: 𝛿 2 ≤ 𝜀

evaluating robustness is an optimization problem
for an input 𝑥, 𝑦 , find 𝛿 ∈ 𝑆 that minimizes 𝑓 𝑥 + 𝛿 y

model’s 
confidence 
in class 𝑦



Adversarial examples can be found with 
gradient descent.
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confidence in the 
“Cat” class

Cat
Lynx
Guacamole

Lynx

Guacamole



Adversarial examples can be found with 
gradient descent.
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confidence in the 
“Cat” class

Cat
Lynx
Guacamole
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for most ML models, the 
optimization problem is easy

(the function is smooth)

many defenses against 
adversarial examples break 

the smoothness of the function

this doesn’t make the 
model more robust!

Many defenses break gradient descent.
T et al. (ICLR 2018): defenses can break function smoothness
Other causes of masked gradients:
- numerical instability: [Papernot et al. ‘17], [Carlini & Wagner ‘17]
- stochasticity: [Athalye et al. ‘18]



36

defense 1

defense 2

defense 3

Strong robustness evaluations are adaptive.
the optimization strategy is tailored to the defense
[Carlini & Wagner ‘17], [Athalye et al. ‘18], [T et al. ‘20]
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defense 1

defense 2

defense 3

Strong robustness evaluations are adaptive.
the optimization strategy is tailored to the defense
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defense 1

defense 2

defense 3

Strong robustness evaluations are adaptive.
the optimization strategy is tailored to the defense
[Carlini & Wagner ‘17], [Athalye et al. ‘18], [T et al. ‘20]



Defenses try adaptive evaluations.
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T, Carlini, Brendel, Mądry (NeurIPS 2020): evaluation of 13 defenses

Q: are existing adaptive 
evaluations effective?



All defenses over-estimate robustness.
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Building stronger adaptive attacks.
our target: adversarial examples detectors
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“cat”

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020



43

Detector

I check whether 
the input is 
perturbed

“cat”

internal features

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020

Building stronger adaptive attacks.
our target: adversarial examples detectors
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“guacamole”

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020

Building stronger adaptive attacks.
our target: adversarial examples detectors
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internal features

“guacamole”

Detector

this input has been 
tampered with!

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020

Building stronger adaptive attacks.
our target: adversarial examples detectors



An overly complex adaptive attack.
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minimize 𝑓 𝑥 + 𝛿 𝑦 + 𝜆 & 𝑔 𝑥 + 𝛿
such that 𝛿 ∈ 𝑆

Detector

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020

confidence that 
input is invalid



An overly complex adaptive attack.

47“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020

Issue: detectors are often
- stochastic
- discontinuous
- numerically unstable

minimize + 𝜆 & 𝑔 𝑥 + 𝛿
such that 𝛿 ∈ 𝑆

Detector



An overly complex adaptive attack.

48“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020

take expectation over 
randomness of 𝑔...

replace 𝑔 by smooth 
approximation )𝑔...

Issue: detectors are often
- stochastic
- discontinuous
- numerically unstable

minimize + 𝜆 & 𝑔 𝑥 + 𝛿
such that 𝛿 ∈ 𝑆



A simpler & stronger attack: feature collisions.

49“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020



A simpler & stronger attack: feature collisions.
insight #1: decompose the system

50

Detector

feature extractor classifier head

we’ll attack this part

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020



feature extractor classifier head

A simpler & stronger attack: feature collisions.
insight #2: target a natural input
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this is our attack’s target

“guacamole”

Detector

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020



Goal: collide with features of the target input.
[Sabour et al. ‘15]
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minimize 𝑓!"#$%&#'$ 𝑥 + 𝛿 − 𝑧 2
such that 𝛿 ∈ 𝑆

internal features 
of guacamole

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020

feature extractors 
are not collision 

resistant!



The feature collision attack.
or “garbage-in, garbage-out”

53

feature extractor classifier head

“guacamole”

internal features 
of guacamole Detector

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020
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Feature collision is a strong adaptive attack.

4 defenses are broken with this strategy

accuracy against 
our attacks

claimed accuracy 
(over baseline)

“On Adaptive Attacks to Adversarial Example Defenses”, NeurIPS 2020



Some defenses work.
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• Adversarial training 

• Certified defenses 

[Szegedy et al. ‘13], [Goodfellow et al. ‘14], [Kurakin et al. ‘16], [T et al. ‘17],
[Madry et al. ‘18], [Zhang et al. ‘19], [Carmon et al. ‘19], [Uesato et al. ‘19],
[Zhai et al. ‘19], [Shafahi et al. ‘19], [Yang et al. ‘19], [Li et al. ‘20], ...

[Katz et al. ‘17], [Wong et al. ‘17], [Raghunathan et al. ‘18], [Gehr et al. ‘18], 
[Lecuyer et al. ‘18], [Zhang et al. ‘18], [Mirman et al. ‘18], [Weng et al. ‘19], 
[Baluta et al. ‘19], [Cohen et al. ‘19], [Singh et al. ‘19], [Gluch et al. ‘20], ...



Some defenses work, but don’t generalize...

56

generalizing to richer 
sets hurts robustness

T & Boneh (NeurIPS 2019 spotlight)

defenses overfit to the chosen set
T, Behrmann, Carlini, Papernot, Jakobsen 

(ICML 2020)

• Adversarial training 

• Certified defenses 

recall: we only consider perturbations 𝛿 from a fixed set 𝑆
issue: all defenses above are explicitly tailored to a chosen set 𝑺

[Katz et al. ‘17], [Wong et al. ‘17], [Raghunathan et al. ‘18], [Gehr et al. ‘18], 
[Lecuyer et al. ‘18], [Zhang et al. ‘18], [Mirman et al. ‘18], [Weng et al. ‘19], 
[Baluta et al. ‘19], [Cohen et al. ‘19], [Singh et al. ‘19], [Gluch et al. ‘20], ...

[Szegedy et al. ‘13], [Goodfellow et al. ‘14], [Kurakin et al. ‘16], [T et al. ‘17],
[Madry et al. ‘18], [Zhang et al. ‘19], [Carmon et al. ‘19], [Uesato et al. ‘19],
[Zhai et al. ‘19], [Shafahi et al. ‘19], [Yang et al. ‘19], [Li et al. ‘20], ...



Take away: we don’t have robust machine 
learning in adversarial settings.
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Take away: we don’t have robust machine 
learning in adversarial settings.
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But, we now have:

1. industry awareness 
of security risks

2. adoption of principled 
security evaluations



The future: evasion attacks 
as safety evaluation.
[Pei et al. ‘17], [Tian et al. ‘17], [Gehr et al. ‘18], [Bansal et al. ‘18], [Ma et al. ‘18], [Sun et al. ‘18], ...

use attacks to stress-test ML in safety-critical systems.

59

our WOOT’18 paper



My work: measuring and enhancing ML security
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Evaluations
Evading ML models (NeurIPS ‘20) (ACM CCS ‘19)
Influenced design changes in Adblock Plus
Extracting private data (IEEE S&P ‘21)

Foundations
Stealing ML models (USENIX ‘16)
Microsoft’s top 3 threats to AI systems
Threat models for evasion (ICML ‘20)

Defenses
Training private models (ICLR ‘21 spotlight)

Training robust models (NeurIPS ‘19 spotlight) (ICLR ‘18)
Deploying private models (ICLR ‘19 oral)



ML models are trained on private data.

61



Challenge: models leak their training data.
Carlini, T, Wallace, Jagielski, Herbert-Voss, Lee et al. (preprint 2020)
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random input

OpenAI’s language model 
trained on text from 8 
million web pages

someone’s contact information 
output by the model 
(redacted for privacy)



Data leaks have dramatic consequences!

63

for users...

for companies...



Preventing data leakage with decade-old ML 
T & Boneh (ICLR 2021 spotlight)

Ø provably prevent leakage of training data.
using differential privacy

Extensions: distributed or federated learning 
[Dean et al. ‘12], [McMahan et al. ‘16], [Lian et al. ‘17]

Ø better accuracy than with deep learning methods.
using domain-specific feature engineering
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Differential privacy prevents data leakage.
[Dwork et al. ‘06]

intuition: randomized training algorithm is not influenced 
(too much) by any individual data point

65

Pr[𝐴train = ]
Pr[𝐴train = ]

≤ 𝑒!

for any two datasets that 
differ in a single element 



Differentially private learning is possible with 
noisy gradient descent.

Gradient descent

Private gradient descent
[Chaudhuri et al., ‘11], [Bassily et al. ‘14], 
[Shokri & Shmatikov ‘15], [Abadi et al. ‘16], ...

66

add noise to each step 
to guarantee privacy
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Non-private deep learning can achieve 
near-perfect accuracy.

67

“deep learning era”



“deep learning era”

Differentially private deep learning 
lowers accuracy significantly.

68
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“deep learning era”
69

Differentially private deep learning 
lowers accuracy significantly.

−40% accuracy!
worse than pre-
deep learning



20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

30

40

50

60

70

80

90

100
C
IF

A
R
-1

0
T
es

t
A
cc

ur
ac

y
(%

)

no privacy
DP (≤ = 3)

Differential privacy without deep learning 
improves accuracy.
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no deep learning!

“deep learning era”
“Differentially private learning needs better features”, ICLR 2021 spotlight



Privacy-free features from “old-school” 
image recognition.
SIFT [Lowe ‘99, ‘04],  HOG [Dalal & Triggs ‘05], SURF [Bay et al. ‘06], ORB [Rublee et al. ‘11], ...
Scattering transforms: [Bruna & Mallat ‘11], [Oyallon & Mallat ‘14], ...

71

captures some prior about 
the domain: e.g., invariance 

under rotation & scaling

“handcrafted features”
(no learning involved)

privacy free

simple classifier
(e.g., logistic regression)



123

"-DiÆerential Privacy
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deep learning

Handcrafted features lead to a better 
tradeoff between accuracy and privacy.

72“Differentially private learning needs better features”, ICLR 2021 spotlight
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Handcrafted features lead to an easier
learning task (for noisy gradient descent).
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bad for privacy

in feature space, 
maximal accuracy is 
reduced but learning 

progresses faster

high accuracy 
classifier exists but

learning takes 
many gradient steps

“Differentially private learning needs better features”, ICLR 2021 spotlight

good for privacy



Learning better privacy-free features 
from public data.

74

train a feature extractor 
on public data...

...transfer and fine-
tune on private data

public data

private data
privacy free

“Differentially private learning needs better features”, ICLR 2021 spotlight
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With access to a public dataset, 
privacy comes almost for free!
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5% gap!
with unlabeled ImageNet 

as the public data

“Differentially private learning needs better features”, ICLR 2021 spotlight



Differential private learning in industry.

76

I added batching support 
for private gradient descent  

I identified and fixed 
incorrect privacy analyzes



My work: measuring and enhancing ML security
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Can we evaluate neural networks privately?
[Gilad-Bachrach et al. ‘16], [Mohassel et al. ‘17], [Liu et al. ‘17], [Juvekar et al. ‘18], [Hunt et al. ‘18], 
[Grover et al. ‘18], ...
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the cloud provider 
sees all your data!

input 𝑥

output 𝑦
𝑥 𝑦

sensitive applications (e.g., in healthcare) must 
abide by strict data confidentiality regulations



Slalom: secure cloud deployment of ML
T & Boneh (ICLR 2019 oral)

79

System goals:
• Confidentiality: cloud provider does not learn user inputs
• Integrity: cloud provider cannot tamper with computation

Ø combines ideas from ML systems, hardware security and 
cryptography to protect user data from a malicious cloud.

Ø maximizes use of cloud’s special-purpose hardware.

Different from differential privacy! 
here, the model is already trained and we 

want to protect the test data of users



𝑥 𝑦
hardware enclave

Baseline: security with slow CPU enclaves.

80

input 𝑥

output 𝑦

general purpose CPU with enclave
• SGX (Intel)
• Sanctum, Keystone (RISC-V)
• Trustzone (ARM)

special purpose 
hardware (e.g., GPU) 
provides no security



Slalom: security with fast custom hardware

81

input 𝑥

output 𝑦

crypto

Slalom

𝑥 𝑦
hardware enclave

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral



Secure outsourcing of matrix products.
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𝑋 𝑊

𝑋

𝑊𝑋

no confidentiality

user input model weights

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral



Secure outsourcing of matrix products.
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𝑋 ∈ ℤ()×) 𝑊 ∈ ℤ()×)

𝑋 + 𝛿

𝑊𝑋 +𝑊𝛿

quantization!
(compute on integers 

modulo prime)

random mask

precomputed 
(independent 

of input)

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral



Secure outsourcing of matrix products.
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𝑋 + 𝛿

garbage

no integrity!

𝑋 ∈ ℤ()×) 𝑊 ∈ ℤ()×)

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral



Secure outsourcing of matrix products.
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𝑋 + 𝛿

𝑍

Probabilistic check

(𝑍 −𝑊𝛿)𝑟 ≟ 𝑊(𝑋𝑟)

𝑶(𝒏𝟐) instead of 𝑶(𝒏𝟑)

𝑋 ∈ ℤ()×) 𝑊 ∈ ℤ()×)

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral



Secure outsourcing of matrix products.
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𝑋 + 𝛿

𝑍

Theorem	(informal):

Assuming	a	secure	PRNG,	Slalom	guarantees	
confidentiality	and	integrity	(with	soundness	
error	 ⁄! " for	a	𝑘-layer	neural	network).

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral



Slalom improves secure inference throughput.

• Intel SGX ⬌ Nvidia Titan XP
• ImageNet inference throughput (images per second)
• Goal: Slalom (Enclave⬌GPU) ≫ Enclavebaseline
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My work: measuring and enhancing ML security
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Foundations

Defenses

Evaluations

Training private models (ICLR ‘21 spotlight)

Training robust models (NeurIPS ‘19 spotlight) (ICLR ‘18)
Deploying private models (ICLR ‘19 oral)

Stealing ML models (USENIX ‘16)
Microsoft’s top 3 threats to AI systems
Threat models for evasion (ICML ‘20)

Evading ML models (NeurIPS ‘20) (ACM CCS ‘19)
Influenced design changes in Adblock Plus
Extracting private data (IEEE S&P ‘21)



Future work
ML security is a critical challenge for our society.
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Foundations

Defenses

Evaluations

Formal foundations for trustworthy ML.
A framework as beautiful as differential privacy 
for other critical safety properties

fairness
[T et al. ‘17]

interpretabilityrobustness



Future work
ML security is a critical challenge for our society.
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Defenses

Cryptography for ML.
Making machine learning secure against 
computationally-bounded adversaries

Evaluations

Foundations



Future work
ML security is a critical challenge for our society.
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Vetting ML safety in critical applications.
Evaluating the failure modes of models once they 
reach 99.999% accuracy

Foundations

Defenses

Evaluations



Conclusion
ML is currently not trustworthy.

- it is not robust.
- it is not private.

We can get better robustness than current ML.
Ø humans are an existence proof.
Ø we must approach this as a security problem.

We can get better privacy than current ML.
Ø with differential privacy and cryptography.

92



Conclusion
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Thank you!

ML is currently not trustworthy.
- it is not robust.
- it is not private.

We can get better robustness than current ML.
Ø humans are an existence proof.
Ø we must approach this as a security problem.

We can get better privacy than current ML.
Ø with differential privacy and cryptography.




