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Machine learning works.
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Machine learning works most of the time!
many applications tolerate occasional failures

Somali ¥ -

agagagagagagag Anditslength was
ag ag ag one hundred cubits —
at one end

" Er]glsh[from the Bible (1 Kings 7:2)}




Machine learning can also fail disastrously.
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" : Uber crash shows 'catastrophic failure’
Critical mistakes... of self-driving technology, experts say
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Machine learning can also fail disastrously.
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Critical mistakes Uber crash shows 'catastrophic failure’
T of self-driving technology, experts say
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Direct attacks... Microsoft Created a Twitter Bot to Learn From
Users. It Quickly Became a Racist Jerk.




Machine learning can also fail disastrously.

guardian

Critical mistakes Uber crash shows 'catastrophic failure’
T of self-driving technology, experts say

_ Ehe New Pork Eimes
Direct attacks... Microsoft Created a Twitter Bot to Learn From
Users. It Quickly Became a Racist Jerk.

Does GPT-2 Know Your Phone Number?

Eric Wallace, Florian Tramer, Matthew Jagielski,
and Ariel Herbert-Voss

Private data leaks...



Challenge: understand and improve the
worst-case behavior of machine learning (ML)

Approach: | study ML from
an adversarial perspective

» to iImprove robustness
and privacy of ML in
adversarial settings

» 1o build ML that is better




My work: measuring and enhancing ML security

Evading ML models (NeurlPS ‘20) (ACM CCS ‘19)
Evaluations | Influenced design changes in Adblock Plus

Extracting private data (IEEE S&P ‘21)

Training private models (ICLR ‘21 spotlight)
Defenses Training robust models (NeurlPS ‘19 spotlight) (ICLR ‘18)
Deploying private models (ICLR ‘19 oral)

Stealing ML models (USENIX ‘16)
Foundations Microsoft's top 3 threats to Al systems

Threat models for evasion (ICML ‘20)
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My work: measuring and enhancing ML security
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My work: measuring and enhancing ML security
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Defenses
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Evading ML models (NeurlPS ‘20) (ACM CCS ‘19)
Influenced design changes in Adblock Plus

Training private models (ICLR ‘21 spotlight)

Deploying private models (ICLR ‘19 oral)
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Adversarial examples: a curious bug in ML

[Szegedy et al. ‘13], [Biggio et al. “13], [Goodfellow et al. ‘14], ...

88% Tabby Cat Adversarial noise 100% Guacamole
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We must treat adversarial examples
as a computer security problem.

In our threat analysis.

|dentify deployed systems where adversarial
examples can cause harms beyond misclassification
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We must treat adversarial examples
as a computer security problem.

In our threat analysis.

T, Dupré, Rusak, Pellegrino, Boneh (ACM CCS 2019)
» adversarial examples are the perfect tool to attack online content blockers
» using ML for ad-blocking can break Web security
» this work led to design changes in Adblock Plus

ABP] AdblockPlus

100M active users
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Adversarial examples are a security threat.
example: online ad-blocking
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Adversarial examples are a security threat.

example: online ad-blocking
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Adversarial examples are a security threat.

example: online ad-blocking
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@ brave <BLOCKED>
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An attacker can use adversarial examples to

evade content blocking.

adversaries (publishers
& advertisers) modify
content to evade

blocking... ‘

...without changing

the UStIGI' S V]:S u dal lockers and the Nuisance at
perception or ads eart of the Modern Web
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For now, the adversary wins!
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“AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning”, ACM CCS 2019



Adversarial examples can cause harm
beyond model evasion.

Adblock Plus wants to run a ML model on screenshots of your
entire Facebook feed.

... SO that
Tom’s post

gets blocked
Jerry uploads

malicious
content

“AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning”, ACM CCS 2019 24



Adversarial examples are a security threat.
example: blocking undesired content
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Adversarial examples are a security threat.
example: blocking undesired content
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IEEEEE to Remove Video of New Zealand
Mosque Shooting
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We must treat adversarial examples
as a computer security problem.

In our threat analysis.

ldentify deployed systems where adversarial
examples can cause harms beyond misclassification

In our defense evaluations.

Evaluate robustness against adaptive adversaries

27



We must treat adversarial examples
as a computer security problem.

In our defense evaluations.

T, Carlini, Brendel, Madry (NeurlPS 2020)

» empirical study of 13 peer-reviewed defenses (from NeurlPS, ICML, ICLR)
» evaluations are overly complex. Simpler attacks break each defense!
» new crypto-inspired attack: feature collisions
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A formal model for evaluating robustness.

 Train a model f(-) on a distribution D of labelled inputs (x, y)

* The adversary perturbs test inputs x sampled from © with noise §

Which perturbations 6 do we allow? ' ambiguous, hard to formalize
- Ideal: any “semantically small” perturbation



A formal model for evaluating robustness.

 Train a model f(-) on a distribution D of labelled inputs (x, y)
* The adversary perturbs test inputs x sampled from © with noise §
Which perturbations 6 do we allow? ' ambiguous, hard to formalize

- Ideal: any “semantically small” perturbation
- Relaxation: perturbations & from a fixed set S [ Example: S = {5: |5, < €} ]

~

necessary but not sufficient
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A formal model for evaluating robustness.

 Train a model f(-) on a distribution © of labelled inputs (x, y)
* The adversary perturbs test inputs x sampled from © with noise §
Which perturbations § do we allow?

- Ideal: any “semantically small” perturbation
- Relaxation: perturbations & from a fixed set S [ Example: S = {5: |5, < €} ]

Ultimate goal:

- discover defensive techniques that generalize across perturbation sets
- learn something new about ML



A formal model for evaluating robustness.

 Train a model f(-) on a distribution © of labelled inputs (x, y)
* The adversary perturbs test inputs x sampled from © with noise §
Which perturbations § do we allow?

- Ideal: any “semantically small” perturbation
- Relaxation: perturbations & from a fixed set S [ Example: S = {5: |5, < €} ]

4 model’s

evaluating robustness is an optimization problem | confidence
for an input (x,y), find § € S that minimizes f (x + §), ) In class y

\.
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Adversarial examples can be found with
gradient descent.

confidence in the Lynx
“Cat” class
Wcat VAT
Lynx Guacamole

Guacamole
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Adversarial examples can be found with
gradient descent.

confidence in the
“Cat” class

] Cat
Lynx

Guacamole
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Many defenses break gradient descent.

T et al. (ICLR 2018): defenses can break function smoothness

Other causes of masked gradients:

- numerical instability: [Papernot et al. “17], [Carlini & Wagner ‘17]
- stochasticity: [Athalye et al. ‘18]

for most ML models, the
optimization problem is easy
(the function is smooth)

many defenses against
adversarial examples break
the smoothness of the function

this doesn’t make the
model more robust!




Strong robustness evaluations are adaptive.
the optimization strateqy is failored to the defense

[Carlini & Wagner ‘17], [Athalye et al. ‘18], [T et al. ‘20]

defense 1

defense 2

defense 3
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Defenses fry adaptive evaluations.
T, Carlini, Brendel, Madry (NeurlPS 2020): evaluation of 13 defenses

100 .
claimed accuracy

20 (over baseline)
80
70

60
50 Q: are existing adaptive

40 evaluations effective?
30
20
10
0

Accuracy (%) on
adversarial examples
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All defenses over-estimate robustness.
T, Carlini, Brendel, Madry (NeurlPS 2020): evaluation of 13 defenses

100
90
80
70
60
50

40
30 accuracy against

20 / our attacks

/
- EENE_EREREEN

Accuracy (%) on
adversarial examples
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Building stronger adaptive attacks.
our target: adversarial examples detectors

14
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Building stronger adaptive attacks.
our target: adversarial examples detectors

Internal features

14
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Building stronger adaptive attacks.
our target: adversarial examples detectors
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Building stronger adaptive attacks.
our target: adversarial examples detectors

Internal features
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An overly complex adaptive attack.

minimize

+ A -Ig(x'+ 6)¥

suchthatd € S

[Detector} confidence that
input is invalid

“On Adaptive Attacks to Adversarial Example Defenses”, NeurlPS 2020 46



An overly complex adaptive attack.

minimize + A - glx+6)
suchthats € S ' \ '

[Detector}

Issue: detectors are often
- Stochastic

- discontinuous
- numerically unstable

“On Adaptive Attacks to Adversarial Example Defenses”, NeurlPS 2020
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An overly complex adaptive attack.

minimize + A - glx+6)
such that 6 € S N
take expectation over replace g by smooth

randomness of g... approximation g...

Issue: detectors are often
- Stochastic

- discontinuous
- numerically unstable

N
(NUVIAN,
N

llllll

“On Adaptive Attacks to Adversarial Example Defenses”, NeurlPS 2020



A simpler & stronger attack: feature collisions.

“On Adaptive Attacks to Adversarial Example Defenses”, NeurlPS 2020 49



A simpler & stronger attack: feature collisions.
insight #1: decompose the system

feature extractor classifier head
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A simpler & stronger attack: feature collisions.
insight #2: target a natural input

feature extractor classifier head
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Goal: collide with features of the target input.

[Sabour et al. ‘15]

minimize
suchthat o € S

erxtractor(x T 5) T

feature extractors

2 are not collision

-

resistant!

(©000000) ~

internal features
of guacamole

“On Adaptive Attacks to Adversarial Example Defenses”, NeurlPS 2020 52



The feature collision attack.
or “garbage-in, garbage-out”

feature extractor classifier head
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Feature collision is a strong adaptive attack.
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Some defenses work.

» Adversarial training

e Certified defenses

[Szegedy et al. “13], [Goodfellow et al. ‘“14], [Kurakin et al. “16], [T et al. ‘17],

[Madry et al. ‘18], [Zhang et al. “19], [Carmon et al. “19], [Uesato et al. ‘“19],
[Zhai et al. “19], [Shafahi et al. “19], [Yang et al. “19], [Li et al. 20], ...

[Katz et al. ‘“17], [Wong et al. ‘“17], [Raghunathan et al. ‘18], [Gehr et al. ‘18],
[Lecuyer et al. ‘18], [Zhang et al. ‘18], [Mirman et al. 18], [Weng et al. ‘19],
[Baluta et al. “19], [Cohen et al. “19], [Singh et al. “19], [Gluch et al. 20], ...
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Some defenses work, but don’t generalize...

» Adversarial training  [szegedy st al. *13], [Goodfellow et al. “14], [Kurakin et al. ‘16], [T et al. “17],
[Madry et al. ‘18], [Zhang et al. “19], [Carmon et al. “19], [Uesato et al. ‘“19],
[Zhai et al. “19], [Shafahi et al. “19], [Yang et al. “19], [Li et al. 20], ...

° Certlfled defenseS [Katz et al. ‘“17], [Wong et al. ‘17], [Raghunathan et al. ‘18], [Gehr et al. ‘18],
[Lecuyer et al. ‘18], [Zhang et al. ‘18], [Mirman et al. 18], [Weng et al. ‘19],

[Baluta et al. “19], [Cohen et al. “19], [Singh et al. “19], [Gluch et al. 20], ...

recall: we only consider perturbations 6 from a fixed set S

issue: all defenses above are explicitly tailored to a chosen set S

g : N — _ ~
defenses overfit to the chosen set generalizing to richer
T, Behrmann, Carlini, Papernot, Jakobsen sets hurts robustness

(ICML 2020) ) \_T & Boneh (NeurlPS 2019 spotlight) |

\_
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Take away: we don’t have robust machine
learning in adversarial settings.

= THE WALL STREET JOURNAL. Q

Facebook, YouTube, Twitter Scramble
to Remove Video of New Zealand
Mosque Shooting

MOTHERBOARD
TECHBY VICE

Researchers Defeat Most Powerful Ad
Blockers, Declare a ‘New Arms Race’
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Take away: we don’t have robust machine
learning in adversarial settings.

But, we now have:

1.

iIndustry awareness -
of security risks

Adblock Plus

& brave

adoption Of prin C[pled On adaptive attacks to adversarial example defenses

F Tramer, N Carlini, W Brendel, A Madry,

Security evaluations Y¢ 99 Citedby 101 Related articles 9
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The future: evasion attacks
as safety evaluation.

[Pei et al. ‘“17], [Tian et al. “17], [Gehr et al. ‘18], [Bansal et al. ‘18], [Ma et al. ‘18], [Sun et al. ‘18], ...

use attacks to stress-fest ML in safety-critical systems.

AUTONOMOUS VEHICLE SENSORS

GPS, 802.1 Ip & . —LIDAR 2 our WOOT'18 paper

Camera

On-Board Unit, emaps

ultrasonic sensors RADAR
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My work: measuring and enhancing ML security

-

~

Evaluations

"

)

~

\

Defenses

~

)

Evading ML models (NeurlPS ‘20) (ACM CCS ‘19)
Influenced design changes in Adblock Plus

Training private models (ICLR ‘21 spotlight)

Deploying private models (ICLR ‘19 oral)

60



ML models are trained on private data.

61
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Challenge: models leak their training data.

Carlini, T, Wallace, Jagielski, Herbert-Voss, Lee et al. (preprint 2020)

Prefix
[random mpUt } _______________________ East Stroudsburg Stroudsburg... ]

/OpenAI’s language model A ¢
trained on text from8 ~ o--momommooooooooos > [ GPT-2 J

kmiIIion web pages

/

[ Memorized text ] l‘
f

I .
someone’s contact information Hor oration
output by the model
k(redacted for privacy)

)




Data leaks have dramatic consequences!

for users...

for companies...

€he New Hork Times
Data Breach Victims Talk of Initial
Terror, Then Vigilance

et

Facebook could face $1.63bn fine under
GDPR over latest data breach

T|: TechCrunch

FTC settlement with Ever orders data and
Als deleted after facial recognition pivot
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Preventing data leakage with decade-old ML
T & Boneh (ICLR 2021 spotlight)

» provably prevent leakage of training data.
using differential privacy

Extensions: distributed or federated learning
[Dean et al. “12], [McMahan et al. ‘16], [Lian et al. ‘17]

» better accuracy than with deep learning methods.
using domain-specific feature engineering
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Differential privacy prevents data leakage.

[Dwork et al. ‘06]

intuition: randomized training algorithm is not influenced
(too much) by any individual data point

for any two datasets that
' differ in a single element

PT [Atraln (

P traln( .
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Differentially private learning is possible with
noisy gradient descent.

Gradient descent

add noise to each step
to guarantee privacy

Private gradient descent

[Chaudhuri et al., “11], [Bassily et al. “14],
[Shokri & Shmatikov ‘15], [Abadi et al. ‘16], ...
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Non-private deep learning can achieve
near-perfect accuracy.
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“deep learning era”



Differentially private deep learning

lowers accuracy significantly.

CIFAR-10
Test Accuracy (
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“deep learning era”
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Differentially private deep learning
lowers accuracy significantly.

CIFAR-10
Test Accuracy (

/N

V4

< 100+
90 -
80 1
70
60 -
50 -
40
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—40% accuracy!

j
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“deep learning era”
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Differential privacy without deep learning
Improves accuracy.

/N
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“deep learning era”
“Differentially private learning needs better features”, ICLR 2021 spotlight 70



Privacy-free features from “old-school”
Image recognition.

SIFT [Lowe 99, ‘04], HOG [Dalal & Triggs ‘05], SURF [Bay et al. ‘06], ORB [Rublee et al. ‘“11], ...
Scattering transforms: [Bruna & Mallat “11], [Oyallon & Mallat ‘14], ...
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“handcrafted features” simple classifier
(no learning involved) (e.g., logistic regression)

‘ captures some prior about
the domain: e.g., invariance
under rotation & scaling 74

privacy free ’



Handcrafted features lead to a better
tradeoff between accuracy and privacy.

CIFAR-10
Test Accuracy (%)
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e-Differential Privacy

“Differentially private learning needs better features”, ICLR 2021 spotlight
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Handcrafted features lead to an easier
learning task (for noisy gradient descent).

4 N

high accuracy

o
classifier exists but " ‘/_\ |
learning takes /\@ /
many gradient steps ° ® o
- /

| Input Space Feature Space

bad for privacy

“Differentially private learning needs better features”, ICLR 2021 spotlight

-

~

in feature space,

maximal accuracy is
reduced but learning

progresses faster

L

good for privacy
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Learning better privacy-free features
from public data.
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“Differentially private learning needs better features”, ICLR 2021 spotlight 74



With access to a public dataset,

privacy comes almost for free!
A~~~
100 -
DN
o N
— L>j’ 80 - 5% gap!
|
Y O 70 - with unlabeled ImageNet *
<L 8 as the public data
— < === no privacy /
O V7 —@= DP (e =3) /
4+ _ /
$ 401 %  DP + public data P
-
— % NI
P AP AR/ >
NN NN R NN

“Differentially private learning needs better features”, ICLR 2021 spotlight
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Differential private learning in industry.

Google

m OpaCUS [ tensorflow / privacy & IBM / differential-privacy-library

\ ) | )
| |

| added batching support | identified and fixed
for private gradient descent Incorrect privacy analyzes

.|||
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My work: measuring and enhancing ML security

-

~

Evaluations

"

)

~

\

Defenses

~

)

Evading ML models (NeurlPS ‘20) (ACM CCS ‘19)
Influenced design changes in Adblock Plus

Training private models (ICLR ‘21 spotlight)

Deploying private models (ICLR ‘19 oral)
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Can we evaluate neural networks privately?

[Gilad-Bachrach et al. ‘16], [Mohassel et al. ‘17], [Liu et al. “17], [Juvekar et al. “18], [Hunt et al. ‘18],
[Grover et al. ‘18], ...

input x

~

e _ the cloud provider
— sees all your data!
- Y

A sensitive applications (e.q., in healthcare) must

abide by strict data confidentiality regulations
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Slalom: secure cloud deployment of ML

T & Boneh (ICLR 2019 oral)

Different from differential privacy!
here, the model is already trained and we
want to protect the fest dafa of users

System goals:
» Confidentiality: cloud provider does not learn user inputs
* Integrity: cloud provider cannot tamper with computation

» combines ideas from ML systems, hardware security and
cryptography to protect user data from a malicious cloud.

» maximizes use of cloud’s special-purpose hardware.
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Baseline: security with slow CPU enclaves.

~ input x ©

special purpose
hardware (e.g., GPU)
provides no security

eneral purpose CPU with enclave
SGX (Intel)
Sanctum, Keystone (RISC-V)
Trustzone (ARM)

)
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Slalom: security with fast custom hardware

- Slalom
= Input x

B E
~ output v =
B E
E] =
& E
E

=

=

R

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral



Secure outsourcing of matrix products.

X

WX

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral 82



Secure outsourcing of matrix products.

WX+ Wo

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral 83



Secure outsourcing of matrix products.

no integrity!

X+0

00000
e ee s

garbage

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral 84



Secure outsourcing of matrix products.

@ A

Probabilistic check

(Z —Wo)r = W(Xr) 7

0 (n?) instead of 0(n3)

o /

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral 85




Secure outsourcing of matrix products.

/Theorem (informal): A

Assuming a secure PRNG, Slalom guarantees
confidentiality and integrity (with soundness
error X/, for a k-layer neural network). y

\_

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral 86



Slalom improves secure inference throughput.

« Intel SGX + Nvidia Titan XP |
execute entire

* ImageNet inference throughput (images per second) | model in secure

* Goal: Slalom (Enclave & GPU) > Enclave,gjine enclave

~

)

10
throughput 10x 10x 10x
relativeto oy 1 Sy 4 : 5x > 1
baseline 0x —_— 0x —_— 0x —_—
VGG16 MobileNet ResNet 152

M Slalom baseline

“Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR 2019 oral 87



My work: measuring and enhancing ML security

Evading ML models (NeurlPS ‘20) (ACM CCS ‘19)
Evaluations | Influenced design changes in Adblock Plus

Extracting private data (IEEE S&P ‘21)

Training private models (ICLR ‘21 spotlight)
Defenses Training robust models (NeurlPS ‘19 spotlight) (ICLR ‘18)
Deploying private models (ICLR ‘19 oral)

Stealing ML models (USENIX ‘16)
Foundations Microsoft's top 3 threats to Al systems

Threat models for evasion (ICML ‘20)



Future work

ML security is a critical challenge for our society.

4 N

fairness

\_ [Tetal."17] /

4 N

=

interpretability

- /

Formal foundations for trustworthy ML.

{Foundations} A framework as beautiful as differential privacy

for other critical safety properties
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Future work
ML security is a critical challenge for our society.

N

W7,
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Defenses \i//'z\\\?///'

Cryptography for ML.
Making machine learning secure against
computationally-bounded adversaries
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Future work
ML security is a critical challenge for our society.

[Evaluations}

Vetting ML safety in critical applications.

Evaluating the failure modes of models once they
reach 99.999% accuracy
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Conclusion

ML is currently not frustworthy.
- it Is not robust.
- It Is not private.

We can get better robustness than current ML.
» humans are an existence proof.
» we must approach this as a security problem.

We can get better privacy than current ML.
» with differential privacy and cryptography.
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Conclusion

ML is currently not frustworthy.
- it Is not robust.
- It Is not private.

We can get better robustness than current ML.
» humans are an existence proof.
» we must approach this as a security problem.

We can get better privacy than current ML.

» with differential privacy and cryptography.
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