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Goal: train a ML model with “privacy”

» what does this mean? data secrecy
» how can we achieve this? federated ML, MPC, FHE, ...
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Goal: train a ML model with “privacy”

» what does this mean? data secrecy
» how (else) can we achieve this? learning on “encoded” data
[Huang et al. "20], [Raynal et al. ’20], ...
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\ ...but enable learning
encoded data should

preserve privacy...




Goal: private learning on “encoded” data

Example: InstaHide [Huang et al. ICML "20]

map pixel space
private$data public data [0, 255] to [-1, 1]

Encode( ™

I A ,
no formal 1) Mixing: )\ . +A, g 5

privacy
guarantee...

2) “high-order bit flip”: o <R{-1,1}d




We show a reconstruction attack on InstaHide.

Is Private Learning Possible with Instance Encoding?, IEEE Security & Privacy 2021



We show a reconstruction attack on InstaHide.

1. Undo the random bit flip

abs("

Is Private Learning Possible with Instance Encoding?, |IEEE Security & Privacy 2021

this is clearly
not private!!!




fuLL
We show a'reconstruction attack on InstaHide.

2. Learn to “recolor” mixed images

Is Private Learning Possible with Instance Encoding?, IEEE Security & Privacy 2021
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fuLL
We show a'reconstruction attack on InstaHide.

3. Undo the mixing by finding the most similar public images

» More attacks
» Impossibility results

Is Private Learning Possible with Instance Encoding?, |IEEE Security & Privacy 2021 11



Goal: train a ML model with “privacy”

» what does this mean? data secrecy
» how (else) can we achieve this? “« ”
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Goal: train a ML model with “privacy”

» what does this mean? data secrecy
» how can we achieve this? federated ML, MPC, FHE, ...




's data secrecy sufficient?

No! The ideal functionality
itself can be non-private

LONG UVE THE REVOLUTION.
OUR NEXT MEETING WILL BE
AT

AHA, FOUND THEM!

J

WHEN YOU TRAIN PREDICTIVE MODELS
ON INPUT FROM YOUR USERS IT CAN
LEAK INFORMATION IN UNEXPECTED WAYS.
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Models memorize their training data.

. Prefix
random Input R et
East Stroudsburg Stroudsburg... ]

OpenAl’s language model trainedon | GPT-2 J
text from 8 million web pages

[ Memorized text ] Y

N\

Horporation Seabank Centre
someone’s contact information Marine Parade Southport
output by the model ——————————
(redacted for privacy)

.com

Extracting Training Data from Large Language Models, preprint 2021



Larger models are /ess private.

Occurrences Memorized?

URL (trimmed) Docs Total XL M S

/I ly/milo_evacua... 1 359 v v 1
/t/Mlzin/hi_my_name... 1 113 v oV
/I ne/for_all_yo... 1 76 v o lh
/t/MB5mj/fake_news._... 1 72 v
/r/H5wn/reddit_admi... 1 64 v
/r/Mllp8/26_evening... 1 56 Vv V
/r/H1a/so_pizzagat... 1 51 v W\
/r/Mubf/late_night... 1 51 v 1
/t/leta/make_christ... 1 35 v oL
/r/M6ev/its_officia... 1 33 Vv
/t/BIBc7/scott_adams... 1 17
/t/Ik20/because_his... 1 17
/r/Htu3/armynavy_ga... 1 8

Extracting Training Data from Large Language Models, preprint 2021



Larger models are /ess private.

Reddit URLs found in
a pastebin file in the
GPT-2 training set

S~

URL (trimmed)

/I ly/milo_evacua...
/t/Mzin/hi_my_name...
/I ne/for_all_yo...
/t/M5mj/fake_news_...
/r/HI5wn/reddit_admi...
/t/Mp8/26_evening...
/r/M1a/so_pizzagat...
/r/MBubf/1ate_night...
/t/leta/make_christ...
/t/I6ev/its_officia...
/r/BIBc7/scott_adams...
/t/ll20/because_his...

/t/Hltu3/armynavy_ga...

Extracting Training Data from Large Language Models, preprint 2021
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Larger models are /ess private.

Occurrences

Docs Total

1 359
1 113
1 76
1 72
1 64
1 56
1 31
1
1
1
1
1
1

51
35
33
17
17
8

\ Some URLs appear many times in

. - _ this pastebin file
Extracting Training Data from Large Language Models, preprint 2021



Larger models are /ess private.

Memorized?

XL M S —

v v L _

Py Different GPT-2 models:
v ik XL: 1558M params
5 , M: 334M params
;v S:124M params

VAR /)

v 2

v a2

v

‘A URL is memorized fully or partially

Extracting Training Data from Large Language Models, preprint 2021 19



Larger models are /ess private.

Occurrences Memorized?
URL (trimmed) Docs Total XL M S

17 memorized an entire URL
17
8

/r/MI3c7/scott_adams...
/r/lk20/because_his...

/r/Hltu3/armynavy_ga...

/r/HIB5 1y/milo_evacua... 1 359 v o voa
/t/Mzin/hi_my_name... 1 113 v
/r/M7ne/for_all_yo... 1 76 v A
/t/M5mj/fake_news._... 1 72 N
/r/l5wn/reddit_admi... 1 64 v
/r/Mllp8/26_evening... 1 56 v V
/r/H1a/so_pizzagat... 1 51 v W
/r/Mubf/late_night... 1 51 VARS'))
It ta/make_christ... 1 35 v i
/rEch/its_ogﬁcia... 1 33 v the Iargest GPT-2 model

1

1

1

that appeared only 33
times in a single document

Extracting Training Data from Large Language Models, preprint 2021 20



Goal: train a ML model with “privacy”

» what does this mean?

no training data leakage
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Preventing data leakage with decade-old ML

» provably prevent leakage of training data.
using differential privacy

» better accuracy than with deep learning methods.
using domain-specific feature engineering

22



Goal: train a ML model with “privacy”

» what does this mean? no training data leakage
» how can we achieve this? differential privacy

intuition: randomized training algorithm is not influenced (too
much) by any individual data point

for any two datasets that

' differ in a single element
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How? Private Gradient Descent

gradient descent
(SGD)

add noise to
guarantee DP

private gradient descent
(DP-SGD)

Chaudhuri et al., ’11; Bassily et al. '14;
Shokri & Shmatikov ’15; Abadi et al. ’16

s S
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Non-private deep learning can achieve
near-perfect accuracy.
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“deep learning era”



Differentially private deep learning
owers accuracy significantly.
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“deep learning era”
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Differentially private deep learning
owers accuracy significantly.
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“deep learning era”
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Differential privacy without deep learning
Improves accuracy.
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Differentially Private Learning Needs Better Features (or Much More Data), ICLR 2021 28
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Privacy-free features from “old-schoo
Image recognition.

SIFT [Lowe ‘99, ‘04], HOG [Dalal & Triggs ‘05], SURF [Bay et al. ‘06], ORB [Rublee et al. “11], ...
Scattering transforms [Bruna & Mallat ‘11], [Oyallon & Mallat “14], ...
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“handcrafted features” simple classifier
(no learning involved) (e.g., logistic regression)

‘ captures some prior about the
domain: e.g., invariance under

rotation & scaling .

privacy free ’



Handcrafted features lead to a better tradeoff
between accuracy and privacy.

o
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Differentially Private Learning Needs Better Features (or Much More Data), ICLR 2021
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Handcrafted features lead to an easier learning
task (for noisy gradient descent).

-

~

high accuracy
classifier exists but
learning takes

\_many gradient steps Y

L

bad for privacy

4 N

in feature space,
maximal accuracy is
reduced but /earning

progresses faster Y

L

good for privacy
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Surpassing handcrafted features with

more private data.

(fore=3) T80
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Differentially Private Learning Needs Better Features (or Much More Data), ICLR 2021
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Surpassing handcrafted features with
more private data.
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Differentially Private Learning Needs Better Features (or Much More Data), ICLR 2021
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Surpassing handcrafted features with
more private data.

(fore=3) T80

"

70‘ ’../.

’ With 10x more private data
601 ¢~ A" end-to-end deep learning
performs best
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Differentially Private Learning Needs Better Features (or Much More Data), ICLR 2021 34



Surpassing handcrafted features with
more private data.
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Differentially Private Learning Needs Better Features (or Much More Data), ICLR 2021



Surpassing handcrafted features with
more public data.
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Differentially Private Learning Needs Better Features (or Much More Data), ICLR 2021 36



With access to a public dataset,
privacy comes almost for free!
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Differentially Private Learning Needs Better Features (or Much More Data), ICLR 2021

37



Goal: train a ML model with “privacy”

» what does this mean?

» data secrecy
» no training data leakage

» how can we achieve this?
» (strong) cryptography
» differential privacy (+ feature engineering!)

> what’s next?
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Can we bridge the accuracy gap in differentially
private learning?
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How much privacy do we really get from DP-SGD?

This generic ML algorithm
also satisfies € > 3: VERVEE s

- training accuracy = 95% f =
- testaccuracy = 5% this privacy budget is high!

Does this actually prevent *
all practical attacks?

=> This is not private at all!
L. O

[ /
O f N1 == no privac //
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s differential privacy sufficient?
No! We also need secure decentralized training

‘
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It’s okay! I’'m training with

still sees all your data!
differential privacy™

41




Conclusion

» Machine learning is not private “by default”!
» Without (strong) cryptography, you must trust someone with your data

» Trained models leak rare training data

> Solutions exist but we need to make them more efficient!

» Secure decentralized learning has high overhead
» Differential privacy needs good features or a lot more data!
» Privacy guarantees must be rigorously defined!
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