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e |solated execution environment
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« Confidentiality host / OS

e Integrity
 Authenticity

key-exchange
Zmanuf.[BU I|d(X) || Data]

Ex[code || data]

Ex[result]
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|solation I1s Imperfect

* E.g., SGX page faults can be induced and seen by OS

* |Leaks memory access patterns

* Many recent papers about cache side channels

Original

Original

(b)

libjpeg attack from Y. Xu, W. Cui, and M. Peinado, "Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems”, IEEE S&P, 2015
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e Side channels “out-of-scope”
e Oblivious Data Structures

« ORAM

* What if leakage doesn’t matter?
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New adversarial model

 Model user program execution in
SGX as Transparent

* We assume unbounded leakage Adversarial
of program execution to host host / OS

e But correct execution and
attestation

*|.e., Integrity, but not confidentiality

NoO secret code or data!

Tmanuf.[BUild(X) || result of exec.]
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SGP generalizes...

 Verifiable Computing
e /K proofs
« COmmitments, etc.
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Interlude: Smart-Contracts

e Code executed on blockchain

e Scripted in Turing-complete
language (e.g. Ethereum)

* Operates on blockchain state
* Money
* Local persistent storage

o Contract state is publicly
visible

Blockchalin
=1
Alice: 20%
Bob: 5%

Alice@+10$

Alice: 25%
Bob: 0%




Abstraction: Smart contract

simulates frusted third party
with public state.
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ENnd-to-end bug-bounty system

Properties:
1. Fair exchange: $Reward iff delivered
exploit

2. Confidentiality: exploit encrypted under
public key of Buyer

3. Guaranteed payment*: buyer will pay at least

one valid seller before specified deadline

— Prevents bug-bounty competition from
being unfairly terminated

“/K-snhark-based Bitcoin systems can't achieve this one
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Marketplaces for

what kinds of bugs”

* In principle, for any system executable /
simulatable in enclave

* |n paper:
* SQL injection attacks
« Facebook Proxygen library fronting SQLite

* Certificate Validation Logic conflicts (“Frankencerts”)
* OpenSSL and mbedTLS

« MITM attacks against TLS handshakes

e Simulation environment in which exploit attacks simulated handshake
between server and honest user

e (Assuming SGX v2)
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crypto primitives)

 Combining SGX with smart-contracts

* Can provide guarantees (e.g. fair-exchange) not
achievable with “traditional” crypto

 Difficult to get right! Both formally and in practice

Sealed Glass Proofs Formal Abstractions for Attested
Execution Secure Processors

https://eprint.iacr.org/2016/635 https:/eprint.iacr.org/2016/1027
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