Sealed-Glass Proofs

IEEE EuroS&P, 2017
April 26, 2017

Florian Trameér, Fan Zhang, Huang Lin,

Jean-Pierre Hubaux, Ari Juels, and Elaine Shi.

Attested Execution

poroperties, threat model, use-cases

Attested Execution

properties, threat model, use-cases

e |solated execution environment
on untrustworthy host Adversarial

Attested Execution

properties, threat model, use-cases

e |solated execution environment
on untrustworthy host Adversarial

* (Confidentiality

Enclave

Attested Execution

properties, threat model, use-cases

e |solated execution environment
on untrustworthy host Adversarial

* (Confidentiality
e Integrity

Enclave

Attested Execution

properties, threat model, use-cases

e |solated execution environment
on untrustworthy host Adversarial
* (Confidentiality
e Integrity
 Authenticity

Attested Execution

properties, threat model, use-cases

e |solated execution environment
on untrustworthy host Adversarial
« Confidentiality host / OS

e Integrity
 Authenticity

key-exchange

Attested Execution

properties, threat model, use-cases

e |solated execution environment
on untrustworthy host Adversarial
* (Confidentiality
e Integrity
 Authenticity

key-exchange
Zmanuf.[BU I|d(X) || Data]

Attestation:

Digital (group) signature over
enclave program + add. data

Attested Execution

properties, threat model, use-cases

e |solated execution environment
on untrustworthy host Adversarial
» Confidentiality host / OS
e Integrity
 Authenticity

key-exchange
Zmanuf.[BU I|d(X) || Data]

Ex[code || data]

Attested Execution

properties, threat model, use-cases

e |solated execution environment
on untrustworthy host Adversarial
« Confidentiality host / OS

e Integrity
 Authenticity

key-exchange
Zmanuf.[BU I|d(X) || Data]

Ex[code || data]

Ex[result]

|solation I1s Imperfect

|solation I1s Imperfect

* E.g., SGX page faults can be induced and seen by OS

* |Leaks memory access patterns

* Many recent papers about cache side channels

Original

Original

(b)

libjpeg attack from Y. Xu, W. Cui, and M. Peinado, "Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems”, IEEE S&P, 2015

Solutions”?

Solutions”?

e Side channels “out-of-scope”
e Oblivious Data Structures

« ORAM

* What if leakage doesn’t matter?

New adversarial model

New adversarial model

 Model user program execution in
SGX as Transparent

Adversarial

New adversarial model

 Model user program execution in
SGX as Transparent

* We assume unbounded leakage Adversarial
of program execution to host

New adversarial model

 Model user program execution in
SGX as Transparent

* We assume unbounded leakage
of program execution to host

e But correct execution and
attestation

Adversarial

New adversarial model

 Model user program execution in
SGX as Transparent

* We assume unbounded leakage
of program execution to host

e But correct execution and
attestation

*|.e., Integrity, but not confidentiality

Adversarial

New adversarial model

 Model user program execution in
SGX as Transparent

* We assume unbounded leakage Adversarial
of program execution to host host / OS

e But correct execution and
attestation

*|.e., Integrity, but not confidentiality

NoO secret code or data!

Tmanuf.[BUild(X) || result of exec.]

Sealed-Glass Proof (SGP)

Sealed-Glass Proof (SGP)

* Key observation: In many interactive
proofs, prover holds secrets, so information
leakage on prover device doesn't hurt

Sealed-Glass Proof (SGP)

* Key observation: In many interactive
proofs, prover holds secrets, so information
leakage on prover device doesn't hurt

| Fser[P, V, prog]
inp.p |
— inp
\
—

outp=prog(inps, iNpy)

ianP

—

o0
R K
\

\
7/

~_

Why “sealed glass”™

« Model: P can observe but can't
modify once inp, “committed”

Fscr[P, V, prog]

ianP

outp=prog(inps, iNpy)

Why “sealed glass” ?

« Model: P can observe but can't
modify once inp, “committed”

Fscr[P, V, prog]

S generalizes. ..

Fsapr[P, V, prog]

outp=prog(inps, iNpy)

SGP generalizes...
* Verifiable Computing

Fscr[P, V, prog]

inpv

G

outp=prog(inps, iNpy)

SGP generalizes...

 Verifiable Computing
e /K proofs

Fscr[P, V, prog]

outp=prog(inps, iNpy)

SGP generalizes...

 Verifiable Computing
e /K proofs
« COmmitments, etc.

| Fscr[P, V, prog]
NP,

—p

ianP

Application:

Falr bug bounty system

SReward
exploit software S

56[[61’

Application:

Falr bug bounty system

software S

exploit m
\\//

$Reward
AN

AY ﬂé?’ Buyer

Application: Bug bounty

56[[61’

Application: Bug bounty

* progs(exploit) = "true’
ff exploit compromises software S
* E.g., SQL injection attack

Application: Bug bounty

* progs(exploit) = "true’
ff exploit compromises software S
* E.g9., SQL injection attack

Fscp[P, V, progs]

exploit
— challengeﬁ
\\V//
Valid exploit for 87 =

SQ[Z:QT

buyer
‘open’ J

—_—

exploit

—

Interlude: Smart-Contracts

Interlude: Smart-Contracts

e Code executed on blockchain

Blockchain
=1
Alice: 20$
Bob: 5%
e &
: 5% 56
A | ICe= —

/Amx§;10$

Alice: 25%
Bob: 0%

Interlude: Smart-Contracts

e Code executed on blockchain

Blockchain
=1
Alice: 20$
Bob: 5%
e &
: 5% 56
A | ICe= —

/Amx§;10$

Alice: 25%
Bob: 0%

Interlude: Smart-Contracts

e Code executed on blockchain

e Scripted in Turing-complete

language (e.g.

-thereum)

Blockchalin
=1
Alice: 20%
Bob: 5%

Alice@+10$

Alice: 25%
Bob: 0%

Interlude: Smart-Contracts

e Code executed on blockchain

e Scripted in Turing-complete

language (e.g.

-thereum)

Blockchalin
=1
Alice: 20%
Bob: 5%

Alice@+10$

Alice: 25%
Bob: 0%

Interlude: Smart-Contracts

e Code executed on blockchain

e Scripted in Turing-complete

language (e.g.

-thereum)

* Operates on blockchain state

* Money

* Local persistent storage

Blockchain
T=1
Alice: 20%
Bob: 5%
T=2 —
Coin -
5% : 5%
Alice= F'h: —
e
- {0
Alice +10%
Alice: 25%

Bob: 0%

Interlude: Smart-Contracts

e Code executed on blockchain

e Scripted in Turing-complete

language (e.g.

-thereum)

* Operates on blockchain state

* Money

* Local persistent storage

Blockchain
T=1
Alice: 20%
Bob: 5%
T=2 —
Coin -
5% : 5%
Alice= F'h: —
e
- {0
Alice +10%
Alice: 25%

Bob: 0%

Interlude: Smart-Contracts

e Code executed on blockchain

e Scripted in Turing-complete
language (e.g. Ethereum)

* Operates on blockchain state
* Money
* Local persistent storage

o Contract state is publicly
visible

Blockchalin
=1
Alice: 20%
Bob: 5%

Alice@+10$

Alice: 25%
Bob: 0%

Abstraction: Smart contract

simulates frusted third party
with public state.

ENnd-to-end bug-bounty system

Fsapr[P, V,

Blockchain

contrac

A 4

b

uyer

ENnd-to-end bug-bounty system

Feorl V. prog;j\ A
Y

Blockchain
o

Bounty “#€
contrac:

SReward
progs

ENnd-to-end bug-bounty system

Fsap|[P, V, progs|

Blockchain

contrac

SReward
progs

A 4

b

uyer

ENnd-to-end bug-bounty system

Fsap|[P, V, progs|

Blockchain

contrac

SReward
progs

A 4

b

uyer

ENnd-to-end bug-bounty system

Fsap|[P, V, progs|

exploit

Blockchain

contrac

SReward
progs

A 4

b

uyer

ENnd-to-end bug-bounty system

Fsap|[P, V, progs|

exploit ¢/

Blockchain

contrac

SReward
progs

A 4

b

uyer

ENnd-to-end bug-bounty system

56[&31"

Fsap|[P, V, progs|

xploit v 4
®

Blockchain

contrac

SReward
progs

b

uyer

ENnd-to-end bug-bounty system

Fsap|[P, V, progs|

Blockchain

Bounty i€, Buyer
contrac:

SReward

ENnd-to-end bug-bounty system

56[&31"

Fsap|[P, V, progs|

Blockchain

b

uyer

ENnd-to-end bug-bounty system

56[&31"

Fsap|[P, V, progs|

Blockchain

b

uyer

ENnd-to-end bug-bounty system

56[&31"

Fsap|[P, V, progs|

Blockchain

b

uyer

ENnd-to-end bug-bounty system

]
+

N

- —

S@ﬂé?"

SReward

Fsap|[P, V, progs|

Blockchain

contrac

/ .

m?xploit

ENnd-to-end bug-bounty system

Fsap|[P, V, progs|

Blockchain
, Bounty 't e
\:f contrac | ?xploit
a

seller /
$Reward progs

» Fair exchange: $Reward for exploit against S

ENnd-to-end bug-bounty system

ENnd-to-end bug-bounty system

Properties:

1. Fair exchange: $Reward iff delivered
exploit

ENnd-to-end bug-bounty system

Properties:

1. Fair exchange: $Reward iff delivered
exploit

2. Confidentiality: exploit encrypted under
public key of Buyer

ENnd-to-end bug-bounty system

Properties:
1. Fair exchange: $Reward iff delivered
exploit

2. Confidentiality: exploit encrypted under
public key of Buyer

3. Guaranteed payment*: buyer will pay at least

one valid seller before specified deadline

— Prevents bug-bounty competition from
being unfairly terminated

“/K-snhark-based Bitcoin systems can't achieve this one

Marketplaces for

what kinds of bugs”

Marketplaces for

what kinds of bugs”

* In principle, for any system executable /
simulatable in enclave

Marketplaces for

what kinds of bugs”

* In principle, for any system executable /
simulatable in enclave

* |n paper:
* SQL injection attacks

Marketplaces for

what kinds of bugs”

* In principle, for any system executable /
simulatable in enclave

* |n paper:
* SQL injection attacks
« Facebook Proxygen library fronting SQLite

* Certificate Validation Logic conflicts (“Frankencerts”)

Marketplaces for

what kinds of bugs”

* In principle, for any system executable /
simulatable in enclave

* |n paper:
* SQL injection attacks
« Facebook Proxygen library fronting SQLite

* Certificate Validation Logic conflicts (“Frankencerts”)
* OpenSSL and mbedTLS

« MITM attacks against TLS handshakes

e Simulation environment in which exploit attacks simulated handshake
between server and honest user

e (Assuming SGX v2)

 Transparent enclave execution (TEE)
* Lots of fun things can be done without
confidentiality!
* Natural extensions to allow for some
functionalities to remain hidden from host (e.g.,
crypto primitives)

* Transparent enclave execution (TEE)
* Lots of fun things can be done without
confidentiality!

* Natural extensions to allow for some
functionalities to remain hidden from host (e.g.,

crypto primitives)

 Combining SGX with smart-contracts

* Can provide guarantees (e.g. fair-exchange) not
achievable with “traditional” crypto

 Difficult to get right! Both formally and in practice

* Transparent enclave execution (TEE)

* Lots of fun things can be done without
confidentiality!

 Natural extensions to allow for some
functionalities to remain hidden from host (e.g.,
crypto primitives)

 Combining SGX with smart-contracts

* Can provide guarantees (e.g. fair-exchange) not
achievable with “traditional” crypto

 Difficult to get right! Both formally and in practice

Sealed Glass Proofs Formal Abstractions for Attested
Execution Secure Processors

https://eprint.iacr.org/2016/635 https:/eprint.iacr.org/2016/1027

https://eprint.iacr.org/2016/635
https://eprint.iacr.org/2016/1027

