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Trusted	hardware:		
Different	communi-es,	different	world	views	

Crypto	 Architecture	 Systems	
&	Security	

•  “Minimal”	trusted	
hardware	to	circumvent	
theore-cal	impossibili-es	

•  Li0le	concern	about	
prac-cal	performance	

	

•  Trusted	execu-on	of	
“general-purpose”		
user-defined	progs	

•  Cost-effec-veness,	
reusability,	expressivity	
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TPM	
Bas-on	

Sanctum	
Ascend	
	

XOM	
	

Aegis	
	

Iso-X	
	

Phantom	
	

GhostRider	
	

									Academia 	 	 	 	 	 			Industry	

Architecture	community	converged	on		
“a#ested	execu,on”	
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Architecture	community	converged	on		
“a#ested	execu,on”	

What	is	“a0ested	

execu-on”	?	
	

	

What	can	it	
(not)	express?	
	

	



A0ested	Execu-on	

5	

Client	

Server	

Verify	

Enclave	

Manufacturer	

Sign	

Compute	prog	on	inp	

outp,		σ	

A0esta-on	that	outp	
is	correctly	computed	
from	prog	and	inp	



•  Formal	security	proofs	for	implementa-ons	
from	precise	abstrac-ons	and	security	models	

	
•  Ul,mate	Goal:	Formally	verified	processor	
implemen-ng	this	formal	abstrac-on	

Why	Ideal	Abstrac-ons?	

6	



Formal	Model	
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𝓖a#[Σ,	reg]	a#[Σ,	reg]	
	

 init(): 	 			,	 	 		⟵	Σ.KeyGen(1λ)	
	
 getpk()	from	P:	send	 					to	P		
	
 install(prog,	sid)	from	P	∊	reg:	
	
 resume(eid,	inp)	from	P	∊	reg:	

	(out,	M’)	=	prog(inp,	M)	
	σ	=	Σ.Sign( 			,	eid,	sid,	prog,	out)	
	send	(out,	σ)	to	P	

Signature	scheme	 Registry	of	all	plaeorms	with	trusted	hardware		

(eid,	P)	 (	sid,	prog,	M	)	

enclave	id	
(nonce)	

enclave	
memory	

…	 …	

’	



Composability	with	Global	State	
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Model	𝓖a#	as	global	ideal	func,onality	[CDPW’07]		a#	as	global	ideal	func,onality	[CDPW’07]		

𝓖a#[Σ,	reg]	a#[Σ,	reg]	

A0esta-on	key	is	shared	across	protocols	



Composability	with	Global	State	

Model	𝓖a#	as	global	ideal	func,onality	[CDPW’07]		a#	as	global	ideal	func,onality	[CDPW’07]		

σ	

𝓖a#[Σ,	reg]	a#[Σ,	reg]	

Example	of	concrete	security	issue:	
	

Non-deniability	for	par-es	in	reg	
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The	more	interes-ng	ques-on	

What	is	“a0ested	

execu-on”	?	
	

	

What	can	it	
(not)	express?	
	

	



The	good	 The	surprise	
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Powerful	
Abstrac-on!	

	
𝓖a#	➔	‘’Stateful	Obfusca,on’’	a#	➔	‘’Stateful	Obfusca,on’’	

	

Impossible	even	with	stateless	
tokens	and	cryptographic	

obfusca-on	

UC-Secure	MPC?	
	
	
	
	
	



The	surprise	
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The	good	

Powerful	
Abstrac-on!	

	
Ga#	➔	‘’Stateful	Obfusca,on’’	

	

Impossible	even	with	stateless	
tokens	and	cryptographic	

obfusca-on	

UC-Secure	MPC?	
	
	
	
	
	



Consider	2PC	
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UC-secure	2PC	possible	if	both	
par,es	have	trusted	hardware	

Impossible	if	only	one	party	has	
trusted	hardware!	

Consider	2PC	
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Impossible	if	only	one	party	has	
trusted	hardware!	

Consider	2PC	

This	is	counter-intui-ve.	



Issue:	non-deniability	
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under	global	pk	

Convinced	that		
some	honest	party	in	the	registry	

par-cipated	in	the	protocol	
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under	global	pk	

Convinced	that		
some	honest	party	in	the	registry	

par-cipated	in	the	protocol	

Non-issue	if	all	nodes	have	trusted	hardware		
or	if	pk	isn’t	global	



What	if	we	really	really	want	to	
use	a	single	trusted	processor?	
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Extra	setup	assump,on:	Augmented	CRS	

Backdoor	enclave	program:	allow	simulator	
to	extract	inputs	and	program	the	outputs		

for	corrupt	par-es	

UC-Secure	MPC	with	O(1)	crypto	operaAons	



Server	

What	if	we	really	really	want	to	
use	a	single	trusted	processor?	
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prog[f,𝓖acrs,𝒫1 … 𝒫n]acrs,𝒫1 … 𝒫n]

1. Generate pki,ski

2. Collect all inpi

3. Compute outp*

Key-exchange	
𝒫i	

pki,	σ	

Encrypted	inpi	

Encrypted	outpi	

Full	protocol	replaces	σ	
by	a	WI-Proof	



Server	

What	if	we	really	really	want	to	
use	a	single	trusted	processor?	
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prog[f,𝓖acrs,𝒫1 … 𝒫n]acrs,𝒫1 … 𝒫n]

3. Trapdoors

  check(𝒢acrs, 𝒫i, idi)acrs, 𝒫i, idi)i, idi)

  check(𝒢acrs, 𝒫i, idi)acrs, 𝒫i, idi)i, idi)
  set outpi = v

Sim	

extract(idi)	

ski	

equivocate(idi,	v)	

Sim	can	recover	inpi	
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Fair	2PC?	

• Fairness	impossible	for	general	
func-onali-es	in	plain	model	[Cleve86]	

Can	trusted	hardware	help	with	fairness?	
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UC-Secure	Fair	2PC	

Enhanced	model:	Clock-aware	secure	processor		
	

•  Fair	2PC	possible	if	both	par-es	have	clock-
aware	secure	processors	

	
•  Fair	coin-tossing	possible	if	one	party	has	clock-

aware	secure	processors	(+	ACRS)	
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Enclaves	establish	secure	channel	

Enclaves	exchange	inputs	and	compute	outputs	

“Will	release	to	Alice	in	2λ	-me”	 “Will	release	to	Bob	in	2λ	-me”	

“Will	release	to	Alice	in	2λ-1	-me”	 “Will	release	to	Bob	in	2λ-1	-me”	

…		
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Enclaves	establish	secure	channel	

“Will	release	to	Alice	in	2λ-1	-me”	 “Will	release	to	Bob	in	2λ-1	-me”	

…		

If	Alice	learns	result	at	-me	t	<	2λ,		
Bob	will	learn	it	at	the	latest	by	-me	2t	

	
	+	no	‘’wasted’’	computa,on!	



What	next?	
A#ested	execu,on	is	a	powerful	assump,on	
⟹	Stateful	Obfusca-on,	Efficient	MPC,	Fair	2PC	

Subtle	issues	unless	all	par-es	have	trusted	hardware	
⟹	Non-deniability,	Extra	setup	assump-ons		

	
Formal	

abstrac-ons	
of	trusted	hw	

Formally	verified	
secure	processor	

design	

Secure	implementa-ons	
from	formally	secure	

abstrac-ons	



Thank	You	

Formal	
abstrac-ons	
of	trusted	hw	

Formally	verified	
secure	processor	

design	

Secure	implementa-ons	
from	formally	secure	

abstrac-ons	


