_

Execution Secure Processors

4])
Formal Abstractions for Attested

J

Eurocrypt
May 15%, 2017

Rafael Pass, Elaine Shi, Florian Tramer

sz CORNELL
& TECH

Trusted hardware:

Different , different
Crypto Architecture [o Jystems
P & Security
“Minimal” trusted \ Trusted execution of
hardware to circumvent “general-purpose”

theoretical impossibilities user-defined progs

Little concern about Cost-effectiveness,
practical performance / reusability, expressivity

Architecture community converged on
“attested execution”

/Bastion

Ascend

Aegis

OM

GhostRideN

|so-X

Sanctum

Phantom

X
\ Academia /

-~

.

Intel® SGX

TrustZone’

Security Foundation by ARM®

Industry /3

Architecture community converged on
“attested execution”

& ¥

What is “attested What can it

execution” ? (not) express?

Attested Execution

Server
Client Compute prog on inp Enclave
>
outp, o &
Verify [€ /\ Sign
0 7
Attestation that outp "
is correctly computed
from prog and inp
Qo Qo

Manufacturer - -

~
~
~~——

Why ldeal Abstractions?

4 ™
* Formal security proofs for implementations
from precise abstractions and security models
- Y,
4 — p
e Ultimate Goal: Formally verified processor
implementing this formal abstraction
\ Y

Formal Model

Signature scheme Registry of all platforms with trusted hardware

\/

G.u[2, reg]

init(): @ww» , @ — 3.KeyGen(1})

enclave id enclave
getpk() from P: send @ to P (nonce) memory
install(prog, sid) from P € reg: —-omoer > (eid, P) | (sid, prog, M)
! N
resume(eid, inp) from P € reg: |

(out, M’) = prog(inp, M) Qoo ::
o = 2.Sign(@, eid, sid, prog, out)

send (out, o) to P

Composability with Global State

Model G, as global ideal functionality [CDPW’07]

Attestation key is shared across protocols

P
—

G.ul2, reg]
P

P
—

Composability with Global State

Model G, as global ideal functionality [CDPW’07]

Example of concrete security issue:

Non-deniability for parties in reg

P
—

G.ul2, reg]
P

P
—

o)

The more interesting question

10

@ The surprise

v It's Complicated

11

@ The surprise

v It's Complicated

12

Consider 2PC

AT

13

Consider 2PC

UC-secure 2PC possible if both
parties have trusted hardware

..

14

Consider 2PC

This is counter-intuitive.

..

15

Issue: non-deniability

16

Non-issue if all nodes have trusted hardware
or if pk isn’t global

Convinced that

participated in the protocol

17

What if we really really want to
use a single trusted processor?
Extra setup assumption: Augmented CRS

UC-Secure MPC with O/ 1) crvpto operations

Backdoor enclave program: allow simulator
to extract inputs and program the outputs
for corrupt parties

18

What if we really really want to
use a single trusted processor?

Server Full protocol replaces ¢
by a WI-Proof
proglf, yPq . Pl |
1. Generate pk;,sk; pk;, o S
} Key-exchange .
2. Collect all inp; !

Encrypted inp.

3. Compute outp”
P P Encrypted outp,

What if we really really want to
use a single trusted processor?

Server

prog[f, y Pl P.]

3. Trapdoors

check(, Pi, 1d;)

check(, Pi, 1d;)
set outp; = v

Sim can recover inp,

e
extract(id))

sk.

equivocate(id,, v)

Sim

20

Can trusted hardware help with fairness?

* Fairness impossible for general
functionalities in plain model [Cleves6]

Fair 2PC

21

UC-Secure Fair 2PC

Enhanced model: Clock-aware secure processor

p
* Fair 2PC possible if both parties have clock-
| aware secure processors

p

Fair coin-tossing possible if one party has clock-
aware secure processors (+ ACRS)

22

Enclaves establish secure channel

Enclaves exchange inputs and compute outputs

'
2
—

“Will release to Alice in 2" time”

x g o |
2
—

“Will release to Alice in 2 time”

“Will release to Bob in 2" time”

i 1
2
| —

“Will release to Bob in 2! time”

o060 23

& &

“Will release to Alice in 2*! time” “Will release to Bob in 2*! time”

24

What next?

Attested execution is a powerful assumption
— Stateful Obfuscation, Efficient MIPC, Fair 2PC

Subtle issues unless all parties have trusted hardware

— Non-deniability, Extra setup assumptions @

Formal Formally verified Secure implementations
abstractions secure processor from formally secure
of trusted hw design abstractions

—

Thank You

Formal Formally verified Secure implementations
abstractions secure processor from formally secure
of trusted hw design abstractions

