
Formal	Abstrac-ons	for	A0ested	
Execu-on	Secure	Processors		

Eurocrypt	
May	1st,	2017	

	

Rafael	Pass,	Elaine	Shi,	Florian	Tramèr	

Trusted	hardware:		
Different	communi-es,	different	world	views	

Crypto	 Architecture	 Systems	
&	Security	

•  “Minimal”	trusted	
hardware	to	circumvent	
theore-cal	impossibili-es	

•  Li0le	concern	about	
prac-cal	performance	

	

•  Trusted	execu-on	of	
“general-purpose”		
user-defined	progs	

•  Cost-effec-veness,	
reusability,	expressivity	

	
2	

3	

TPM	
Bas-on	

Sanctum	
Ascend	
	

XOM	
	

Aegis	
	

Iso-X	
	

Phantom	
	

GhostRider	
	

									Academia 	 	 	 	 	 			Industry	

Architecture	community	converged	on		
“a#ested	execu,on”	

4	

Architecture	community	converged	on		
“a#ested	execu,on”	

What	is	“a0ested	

execu-on”	?	
	

	

What	can	it	
(not)	express?	
	

	

A0ested	Execu-on	

5	

Client	

Server	

Verify	

Enclave	

Manufacturer	

Sign	

Compute	prog	on	inp	

outp,		σ	

A0esta-on	that	outp	
is	correctly	computed	
from	prog	and	inp	

•  Formal	security	proofs	for	implementa-ons	
from	precise	abstrac-ons	and	security	models	

	
•  Ul,mate	Goal:	Formally	verified	processor	
implemen-ng	this	formal	abstrac-on	

Why	Ideal	Abstrac-ons?	

6	

Formal	Model	

7	

	

𝓖a#[Σ,	reg]	a#[Σ,	reg]	
	

 init(): 	 			,	 	 		⟵	Σ.KeyGen(1λ)	
	
 getpk()	from	P:	send	 					to	P		
	
 install(prog,	sid)	from	P	∊	reg:	
	
 resume(eid,	inp)	from	P	∊	reg:	

	(out,	M’)	=	prog(inp,	M)	
	σ	=	Σ.Sign(,	eid,	sid,	prog,	out)	
	send	(out,	σ)	to	P	

Signature	scheme	 Registry	of	all	plaeorms	with	trusted	hardware		

(eid,	P)	 (sid,	prog,	M)	

enclave	id	
(nonce)	

enclave	
memory	

…	 …	

’	

Composability	with	Global	State	

8	

Model	𝓖a#	as	global	ideal	func,onality	[CDPW’07]		a#	as	global	ideal	func,onality	[CDPW’07]		

𝓖a#[Σ,	reg]	a#[Σ,	reg]	

A0esta-on	key	is	shared	across	protocols	

Composability	with	Global	State	

Model	𝓖a#	as	global	ideal	func,onality	[CDPW’07]		a#	as	global	ideal	func,onality	[CDPW’07]		

σ	

𝓖a#[Σ,	reg]	a#[Σ,	reg]	

Example	of	concrete	security	issue:	
	

Non-deniability	for	par-es	in	reg	

9	

10	

The	more	interes-ng	ques-on	

What	is	“a0ested	

execu-on”	?	
	

	

What	can	it	
(not)	express?	
	

	

The	good	 The	surprise	

11	

Powerful	
Abstrac-on!	

	
𝓖a#	➔	‘’Stateful	Obfusca,on’’	a#	➔	‘’Stateful	Obfusca,on’’	

	

Impossible	even	with	stateless	
tokens	and	cryptographic	

obfusca-on	

UC-Secure	MPC?	
	
	
	
	
	

The	surprise	

12	

The	good	

Powerful	
Abstrac-on!	

	
Ga#	➔	‘’Stateful	Obfusca,on’’	

	

Impossible	even	with	stateless	
tokens	and	cryptographic	

obfusca-on	

UC-Secure	MPC?	
	
	
	
	
	

Consider	2PC	

13	

14	

UC-secure	2PC	possible	if	both	
par,es	have	trusted	hardware	

Impossible	if	only	one	party	has	
trusted	hardware!	

Consider	2PC	

15	

Impossible	if	only	one	party	has	
trusted	hardware!	

Consider	2PC	

This	is	counter-intui-ve.	

Issue:	non-deniability	
	

16	

under	global	pk	

Convinced	that		
some	honest	party	in	the	registry	

par-cipated	in	the	protocol	

17	

under	global	pk	

Convinced	that		
some	honest	party	in	the	registry	

par-cipated	in	the	protocol	

Non-issue	if	all	nodes	have	trusted	hardware		
or	if	pk	isn’t	global	

What	if	we	really	really	want	to	
use	a	single	trusted	processor?	

18	

Extra	setup	assump,on:	Augmented	CRS	

Backdoor	enclave	program:	allow	simulator	
to	extract	inputs	and	program	the	outputs		

for	corrupt	par-es	

UC-Secure	MPC	with	O(1)	crypto	operaAons	

Server	

What	if	we	really	really	want	to	
use	a	single	trusted	processor?	

19	

prog[f,𝓖acrs,𝒫1 … 𝒫n]acrs,𝒫1 … 𝒫n]

1. Generate pki,ski

2. Collect all inpi

3. Compute outp*

Key-exchange	
𝒫i	

pki,	σ	

Encrypted	inpi	

Encrypted	outpi	

Full	protocol	replaces	σ	
by	a	WI-Proof	

Server	

What	if	we	really	really	want	to	
use	a	single	trusted	processor?	

20	

prog[f,𝓖acrs,𝒫1 … 𝒫n]acrs,𝒫1 … 𝒫n]

3. Trapdoors

 check(𝒢acrs, 𝒫i, idi)acrs, 𝒫i, idi)i, idi)

 check(𝒢acrs, 𝒫i, idi)acrs, 𝒫i, idi)i, idi)
 set outpi = v

Sim	

extract(idi)	

ski	

equivocate(idi,	v)	

Sim	can	recover	inpi	

21	

Fair	2PC?	

• Fairness	impossible	for	general	
func-onali-es	in	plain	model	[Cleve86]	

Can	trusted	hardware	help	with	fairness?	

22	

UC-Secure	Fair	2PC	

Enhanced	model:	Clock-aware	secure	processor		
	

•  Fair	2PC	possible	if	both	par-es	have	clock-
aware	secure	processors	

	
•  Fair	coin-tossing	possible	if	one	party	has	clock-

aware	secure	processors	(+	ACRS)	

23	

Enclaves	establish	secure	channel	

Enclaves	exchange	inputs	and	compute	outputs	

“Will	release	to	Alice	in	2λ	-me”	 “Will	release	to	Bob	in	2λ	-me”	

“Will	release	to	Alice	in	2λ-1	-me”	 “Will	release	to	Bob	in	2λ-1	-me”	

…		

24	

Enclaves	establish	secure	channel	

“Will	release	to	Alice	in	2λ-1	-me”	 “Will	release	to	Bob	in	2λ-1	-me”	

…		

If	Alice	learns	result	at	-me	t	<	2λ,		
Bob	will	learn	it	at	the	latest	by	-me	2t	

	
	+	no	‘’wasted’’	computa,on!	

What	next?	
A#ested	execu,on	is	a	powerful	assump,on	
⟹	Stateful	Obfusca-on,	Efficient	MPC,	Fair	2PC	

Subtle	issues	unless	all	par-es	have	trusted	hardware	
⟹	Non-deniability,	Extra	setup	assump-ons		

	
Formal	

abstrac-ons	
of	trusted	hw	

Formally	verified	
secure	processor	

design	

Secure	implementa-ons	
from	formally	secure	

abstrac-ons	

Thank	You	

Formal	
abstrac-ons	
of	trusted	hw	

Formally	verified	
secure	processor	

design	

Secure	implementa-ons	
from	formally	secure	

abstrac-ons	

