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Trusted hardware:

Different , different
Crypto Architecture [ o Jystems
P & Security
“Minimal” trusted \  Trusted execution of
hardware to circumvent “general-purpose”

theoretical impossibilities user-defined progs

Little concern about Cost-effectiveness,
practical performance / reusability, expressivity




Architecture community converged on
“attested execution”
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Architecture community converged on
“attested execution”
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What is “attested What can it

execution” ? (not) express?



Attested Execution

Server
Client Compute prog on inp Enclave
>
outp, o &
Verify [€ /\ Sign
0 7
Attestation that outp "
is correctly computed
from prog and inp
Qo Qo
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Why ldeal Abstractions?

4 ™
* Formal security proofs for implementations
from precise abstractions and security models
- Y,
4 — p
e Ultimate Goal: Formally verified processor
implementing this formal abstraction
\ Y




Formal Model

Signature scheme Registry of all platforms with trusted hardware

\/

G.u[2, reg]

init(): @ww» , @ — 3.KeyGen(1})

enclave id enclave
getpk() from P: send @ to P (nonce) memory
install(prog, sid) from P € reg: —-omoer > (eid, P) | (sid, prog, M)
! N
resume(eid, inp) from P € reg: |

(out, M’) = prog(inp, M) Qoo ::
o = 2.Sign(@, eid, sid, prog, out)

send (out, o) to P



Composability with Global State

Model G, as global ideal functionality [CDPW’07]

Attestation key is shared across protocols
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Composability with Global State

Model G, as global ideal functionality [CDPW’07]

Example of concrete security issue:

Non-deniability for parties in reg
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The more interesting question
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@ The surprise

v It's Complicated
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@ The surprise

v It's Complicated
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Consider 2PC

AT
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Consider 2PC

UC-secure 2PC possible if both
parties have trusted hardware

..
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Consider 2PC

This is counter-intuitive.

..
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Issue: non-deniability
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Non-issue if all nodes have trusted hardware
or if pk isn’t global

Convinced that

participated in the protocol
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What if we really really want to
use a single trusted processor?
Extra setup assumption: Augmented CRS

UC-Secure MPC with O/ 1) crvpto operations

Backdoor enclave program: allow simulator
to extract inputs and program the outputs
for corrupt parties
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What if we really really want to
use a single trusted processor?

Server Full protocol replaces ¢
by a WI-Proof
proglf, yPq . Pl |
1. Generate pk;,sk; pk;, o S
} Key-exchange .
2. Collect all inp; !

Encrypted inp.

3. Compute outp”
P P Encrypted outp,




What if we really really want to
use a single trusted processor?

Server

prog[f, y Pl P.]

3. Trapdoors

check( , Pi, 1d;)

check( , Pi, 1d;)
set outp; = v

Sim can recover inp,

e
extract(id))

sk.

equivocate(id,, v)

Sim
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Can trusted hardware help with fairness?

* Fairness impossible for general
functionalities in plain model [Cleves6]

Fair 2PC
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UC-Secure Fair 2PC

Enhanced model: Clock-aware secure processor

p
* Fair 2PC possible if both parties have clock-
| aware secure processors

p

Fair coin-tossing possible if one party has clock-
aware secure processors (+ ACRS)
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Enclaves establish secure channel

Enclaves exchange inputs and compute outputs
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“Will release to Alice in 2" time”
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“Will release to Alice in 2 time”

“Will release to Bob in 2" time”
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2
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“Will release to Bob in 2! time”
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“Will release to Alice in 2*! time” “Will release to Bob in 2*! time”
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What next?

Attested execution is a powerful assumption
— Stateful Obfuscation, Efficient MIPC, Fair 2PC

Subtle issues unless all parties have trusted hardware

— Non-deniability, Extra setup assumptions @

Formal Formally verified Secure implementations
abstractions secure processor from formally secure
of trusted hw design abstractions
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Thank You

Formal Formally verified Secure implementations
abstractions secure processor from formally secure
of trusted hw design abstractions




