
Enter Hydra 
towards (more) secure smart contracts 

 Philip Daian, Ari Juels 
 Cornell [Tech] . 

 Florian Tramer . 

 Stanford . 

Lorenz Breidenbach 
 ETH Zurich, Cornell [Tech]. 



Bug bounties 
  



● Unaligned incentives (exploit $$$ > bounty $) 

● Time lag between reporting and action 

● No fair exchange: bounty admin may not pay! 

Problems with Bug bounties 
  



● Unaligned incentives (exploit $$$ > bounty $) 

● Time lag between reporting and action 

● No fair exchange: bounty admin may not pay! 

Problems with Bug bounties 
  



The perfect bug bounty 

1. “Strong exploit gap”: Small bounty 
incentivizes disclosure for valuable 
program 

2. Automatic remediation: Immediate 
intervention in affected software 

3. Automatic payout: Bounty hunter need 
not trust bounty administrator to pay 
• Censorship-resistant, verifiable 

 
 
 
 



Why bug bounties? 
  

The  
rational attacker’s  
game 



Why bug bounties? 
  

The  
rational attacker’s  
game 

Exploit!! 

Attack Disclose 

$0 $A 



Why bug bounties? 
  

Exploit!! 

Attack Disclose 

$0 $A 

The  
rational attacker’s  
game Attack if $A > $0 

Always attack 



“Good enough” isn’t good enough 
  

Exploit!! 

Attack Disclose 

$?? $A 

The  
rational attacker’s  
game 
 



“Good enough” isn’t good enough 
  

Exploit!! 

Attack Disclose 

$?? $A 

The  
rational attacker’s  
game 
 

Attack if $A > $?? 



Towards a better game 
  

Exploit!! 

Attack Disclose 

$B $A 

The  
rational attacker’s  
game 
 



Towards a better game 
  

Exploit!! 

Attack Disclose 

$B $A 

The  
rational attacker’s  
game 
 
Classic bounty 

Attack if $A > $B 



The ideal game 
  

Exploit!! 

Attack Disclose 

$B -$C $A 

The  
rational attacker’s  
game 
Hydra bounty 
Known payout 



The ideal game 

Exploit!! 

Attack Disclose 

$B -$C $A 

The  
rational attacker’s  
game 
Hydra bounty 
Known payout 
Gap to exploit 

Attack if $A-$C > $B 



The  
rational attacker’s  
game 
Hydra bounty 
Known payout 

The ideal game 
  

Exploit!! 

Attack Disclose 

$B -$C $A 

Attack if $A-$C > $B 
So, raise $C…. 



We call this 
barrier ($C) an 
“exploit gap” 

… mind the gap! 
  

Exploit!! 

Attack Disclose 

$B -$C $A 





Exploit Gap through Hydra Contracts 
  

Chen & Avizienis, ‘78 



… Houston we have a gap 
(only one contract has bug) 
  



… Houston we have a gap 
(contracts have different bugs) 
  



… Houston we have no gap! Hydra fails! 
(all contracts have same bug) 
  



N-Version Programming Criticism 
  

●  Analysis assumes full independence of faults (correlations are annoying!) 

●  Knight-Leveson (‘86):  
« We reject the null hypothesis of full  
independence at a p-level of 5% » 

●  Eckhardt et al. (’91): 
 « We tried it at NASA and it wasn’t cost effective» 
 Worst-case: 3 versions = 4x fewer errors 



●  «Classical» N-Version Programming: Availability >> Reliability 
    -    Majority Voting: Always available, but may fail often 

●  Smart contracts: do we really car if it’s down for a while? 
    -    N-out-of-N agreement: better no answer than the wrong one 

●  Numbers from Eckhardt et al. look much better: 
    -    For 3 versions, 30 − 5087 times fewer failures 
         (but some loss in availability…) 
 

But not everything is a space shuttle! 
  



The perfect bug bounty 

1. “Strong exploit gap”: Small bounty 
incentivizes disclosure for valuable 
program 

2. Automatic remediation: Immediate 
intervention in affected software 

3. Automatic payout: Bounty hunter need 
not trust bounty administrator to pay 

• Censorship-resistant, verifiable 

 
 
 
 

✓ 



Target Application: 

Smart Contracts 



Smart contracts are the perfect target 

●  Small programs with astonishing value per line of code 

 
 

●  Hydra friendly bug remediation (return money, put in escrow etc) 
●  Automatic bounty payment possible 
●  Bonus: automatic assesment of value at risk 

Token Lines of Code Value per line 

OmiseGo 396 ~$1.59M 

Tether 423 ~$1.11M 

EOS 584 ~$1.01M 

Sources: coinmarketcap.com, 3 Nov., 8:20 a.m. and 
published contract source code Sources: coinmarketcap.com, 3 Nov., 8:20 a.m. and 

published contract source code Sources: coinmarketcap.com, 3 Nov., 8:20 a.m. and 
published contract source code Sources: coinmarketcap.com, 3 Nov., 8:20 a.m. and 

published contract source code Sources: coinmarketcap.com, 3 Nov., 8:20 a.m. and 
published contract source code 

Sources: coinmarketcap.com, 3 Nov., 8:20 a.m. and published contract source code 



The perfect bug bounty 

1. “Strong exploit gap”: Small bounty 
incentivizes disclosure for valuable 
program 

2. Automatic remediation: Immediate 
intervention in affected software 

3. Automatic payout: Bounty hunter need 
not trust bounty administrator to pay 

• Censorship-resistant, verifiable 

 
 
 
 

✓ 
✓ 
✓ 



Development Challenges 

●  Coordinating multiple smart contracts: 
    -    The coordinator should be bug free => simple proxy behavior 
    -    Maintain consistent blockchain state 
    -    How to recover from a discovered bug => escape hatches 

●  Frontrunning (as always…) 
    -    Attacker can break the exploit gap by witholding bugs 
    -    Search for full exploit until someone tries to claim a bounty 
    -    Solution: Submarine sends! 
              http://hackingdistributed.com/2017/08/28/submarine-sends/ 

  
 



Bug Withholding and Commit-Reveal 

Sol 1: To claim bounty at time T, must commit to bug at time T- 1 
 

Problem: Attacker commits in every round and only reveals if someone 
else does 
 
Sol 2: To commit, you must pay $$ (in a verifiable way) 
 

Problem: Attacker commits if someone else also commits 
 
Sol 3: Hide commitments (e.g., proof of burn to random address) 
 

Problem: Wasteful 
 



Submarine Sends (post-metropolis version) 

Goals: (1) only allow committed users to send a transaction to C 
            (2) being eternally committed is expensive 
            (3) attacker can’t know if someone has committed 
            (4) money isn’t wasted 
 
Submarine sends: 
Phase 1: compute addr = H(C || nonce || code) and send $$ to addr 
Phase 2: reveal addr to C.  
               C verifies that addr got $$ in Phase 1 
               C creates a contract with the specified nonce and code 

     C collects $$ and allows transaction 
                       

send $$ to C 

addr: { 
  BAL: $$ 
  CODE: ø 
} 

addr: { 
  BAL: $$ 
  CODE: code 
} 



www.thehydra.io


