Enter Hydra

fowards (more) secure smart contracts

’ Philip Daian, Ari Juels / Am J
7\ x Cornell [Tech] » Lorenz Breidenbach
’ ETH Zurich, Cornell [Tech
N L\:_ \)i," uri [' Ji

Florian Tramer ({) "N
Stanford i\ |

Bug bounties

TRADITIONAL WAY CROWD SECURITY WAY

o o
- . NO limited
Limited time @ ()E.J time

! L
2 to 4 eyes l @s(ﬁ ﬁl{@ Community
- o

g L4

\
Bounty
program

\/

Customer l

Customer

Problems with Bug bounties

eUnaligned incentives (exploit $$$ > bounty $)

e Time lag between reporting and action

eNo fair exchange: bounty admin may not pay!

Problems with Bug bounties

oU

-=OEGURITY WEEK

INTERNET AND ENTERPRISE SECURITY NEWS, INSIGHTS & ANALYSIS

Subscribe (Free) | CISO |

Malware & Threats Cybercrime Mobile & Wireless Risk & Compliance Security Architecture

ol

Cyberwarfare Fraud & Identity Theft Phishing Malware Tracking & Law Enforcement

Researchers Claim Wickr Patched Flaws but
Didn't Pay Rewards

By Ionut Arghire on October 31, 2016

The perfect bug bounty

7%] 1.“Strong exploit gap”: Small bounty
i incentivizes disclosure for valuable
program

2. Automatic remediation: Immediate
intervention in affected software

3.Automatic payout: Bounty hunter need

not trust bounty administrator to pay
* Censorship-resistant, verifiable

Why bug bounties?

The
rational attacker’s %2
game | £ ol

Why bug bounties?

The

rational attacker’s
game

No bounties

Why bug bounties?

The =) e
- PN e

ratior :

game AttaCk |f $A > $O -

NO b
Alwattack_-

“Good enough” isn’t good enough

The
rational attacker’s
game

“Good enough” isn’t good enough

The
ratio

gam‘Attack If $A > $?’? N

Classic bouinty
Unknown payolut

$?7?

Towards a better game

The
rational attacker’s
game

Classic bouinty
Kinowin payout

Towards a better game

The
ratio

gam‘Attack f $A > $B B

Classic bounty /1 S ip’{
Kinowin payout PNl i

The ideal game

The
rational attacker’s
game

Hydra bounty
Known payout
Gap to exploit

The ideal game

The

- Attack if $A-$C > 5B

Hy\.II a vwvuli Il-’

Known payout
Gap to exploit

The ideal game

The =) |
gc ttack If $A-$C > $B
S0, ra/se$C

... mind the gap!

We call this
barrier ($C) an
“exploit gap”

“AROBERT ZEMECKS ree

Exploit Gap through Hydra Contracts

Input

| \lersion 1|

» \Version 2

e \ersion3 F——

N software versions

Il

Chen & Avizienis, ‘78

Output
S
selector
v . Agreed
result
Fault
manager

... Houston we have a gap

(only one contract has bug)

Input

e ——

>

D,

Version 2

Version 3

—

|

N software versions

Il

Output
S
selector
. Agreed
result
, Fault
manager

... Houston we have a gap
(contracts have different bugs)

Y

Input
T
=

N software versions

Output
S
selector
. Agreed
result
, Fault
manager

... Houston we have no gap! Hydra fails!
(all contracts have same bug)

Y

nput I Output
> > - >
[T selector
'

. Agreed

result
-

manager

N software versions

N-Version Programming Criticism

e Analysis assumes full independence of faults (correlations are annoying!)

e Knight-Leveson ('86):
« We reject the null hypothesis of full
independence at a p-level of 5% »

e Eckhardtetal. ('91):

« We tried it at NASA and it wasn’t cost effective»
Worst-case: 3 versions = 4x fewer errors

But not everything is a space shuttle!

e «Classical» N-Version Programming: Availability >> Reliability
- Majority Voting: Always available, but may fail often

e Smart contracts: do we really car if it's down for a while?
- N-out-of-N agreement: better no answer than the wrong one

e Numbers from Eckhardt et al. look much better:
- For 3 versions, 30 — 5087 times fewer failures
(but some loss in availability...)

The perfect bug bounty

1.“Strong exploit gap”: Small bounty
incentivizes disclosure for valuable
program

2. Automatic remediation: Immediate
intervention in affected software

3.Automatic payout: Bounty hunter need

not trust bounty administrator to pay
* Censorship-resistant, verifiable

i Target Application:

| Smart Contracts |

Smart contracts are the perfect target

e Small programs with astonishing value per line of code

OmiseGo 396 ~$1.59M
Tether 423 ~$1.11M
EOS 584 ~$1.01M

Sources: coinmarketcap.com, 3 Nov., 8:20 a.m. and published contract source code

e Hydra friendly bug remediation (return money, put in escrow etc)
e Automatic bounty payment possible
e Bonus: automatic assesment of value at risk

The perfect bug bounty

% .“Strong exploit gap”: Small bounty
incentivizes disclosure for valuable
program

2. Automatic remediation: Immediate
intervention in affected software

3.Automatic payout: Bounty hunter need

not trust bounty administrator to pay
* Censorship-resistant, verifiable

Development Challenges

e Coordinating multiple smart contracts:
- The coordinator should be bug free => simple proxy behavior
- Maintain consistent blockchain state
- How to recover from a discovered bug => escape hatches

e Frontrunning (as always...)
- Attacker can break the exploit gap by witholding bugs
- Search for full exploit until someone tries to clalm a bounty

- Solution: Submarine sends!
http://hackingdistributed.com/2017/08/28/submarine-sends/

Bug Withholding and Commit-Reveal

Sol 1: To claim bounty at time T, must commit to bug at time T- 1

Problem: Attacker commits in every round and only reveals if someone
else does

Sol 2: To commit, you must pay $$ (in a verifiable way)

Problem: Attacker commits if someone else also commits

Sol 3: Hide commitments (e.g., proof of burn to random address)

Submarine Sends (post-metropolis version)

Goals: (1) only allow committed users to send a transaction to C
(2) being eternally committed is expensive
(3) attacker can’t know if someone has committed

C addr: {
(4) money isn’'t wasted BAL: §$

CODE: gode

send $$ to C

Submarine sends: N i
Phase 1: compute addr = H(C || nonce || code) and send $$ to addr
Phase 2: reveal addrto C.

C verifies that addr got $$ in Phase 1

C creates a contract with the specified nonce and code

C collects $$ and allows transaction

-
_m” A ryy o™

The Hydra Project Eeha]

Hydra is a cutting-edge Ethereum contract development framework for:

decentralized security and bug bounties
rigorous cryptoeconomic security guarantees
mitigating programmer and compiler error

READ THE PAPER TRY THE ALPHA

