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Bug bounties
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Problems with Bug bounties

eUnaligned incentives (exploit $$$ > bounty $)

e Time lag between reporting and action

eNo fair exchange: bounty admin may not pay!
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The perfect bug bounty

7% ] 1.“Strong exploit gap”: Small bounty
i incentivizes disclosure for valuable
program

2. Automatic remediation: Immediate
intervention in affected software

3.Automatic payout: Bounty hunter need

not trust bounty administrator to pay
* Censorship-resistant, verifiable
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“Good enough” isn’t good enough
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The ideal game
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The ideal game
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... mind the gap!

We call this
barrier ($C) an
“exploit gap”




“AROBERT ZEMECKS ree




Exploit Gap through Hydra Contracts
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... Houston we have a gap

(only one contract has bug)
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... Houston we have a gap
(contracts have different bugs)
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... Houston we have no gap! Hydra fails!
(all contracts have same bug)
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N-Version Programming Criticism

e Analysis assumes full independence of faults (correlations are annoying!)

e Knight-Leveson ('86):
« We reject the null hypothesis of full
independence at a p-level of 5% »

e Eckhardtetal. ('91):

« We tried it at NASA and it wasn’t cost effective»
Worst-case: 3 versions = 4x fewer errors




But not everything is a space shuttle!

e «Classical» N-Version Programming: Availability >> Reliability
- Majority Voting: Always available, but may fail often

e Smart contracts: do we really car if it's down for a while?
- N-out-of-N agreement: better no answer than the wrong one

e Numbers from Eckhardt et al. look much better:
-  For 3 versions, 30 — 5087 times fewer failures
(but some loss in availability...)




The perfect bug bounty

1.“Strong exploit gap”: Small bounty
incentivizes disclosure for valuable
program

2. Automatic remediation: Immediate
intervention in affected software

3.Automatic payout: Bounty hunter need

not trust bounty administrator to pay
* Censorship-resistant, verifiable




i Target Application:

| Smart Contracts |




Smart contracts are the perfect target

e Small programs with astonishing value per line of code

OmiseGo 396 ~$1.59M
Tether 423 ~$1.11M
EOS 584 ~$1.01M

Sources: coinmarketcap.com, 3 Nov., 8:20 a.m. and published contract source code

e Hydra friendly bug remediation (return money, put in escrow etc)
e Automatic bounty payment possible
e Bonus: automatic assesment of value at risk
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Development Challenges

e Coordinating multiple smart contracts:
- The coordinator should be bug free => simple proxy behavior
- Maintain consistent blockchain state
-  How to recover from a discovered bug => escape hatches

e Frontrunning (as always...)
- Attacker can break the exploit gap by witholding bugs
- Search for full exploit until someone tries to clalm a bounty

- Solution: Submarine sends!
http://hackingdistributed.com/2017/08/28/submarine-sends/




Bug Withholding and Commit-Reveal

Sol 1: To claim bounty at time T, must commit to bug at time T- 1

Problem: Attacker commits in every round and only reveals if someone
else does

Sol 2: To commit, you must pay $$ (in a verifiable way)

Problem: Attacker commits if someone else also commits

Sol 3: Hide commitments (e.g., proof of burn to random address)



Submarine Sends (post-metropolis version)

Goals: (1) only allow committed users to send a transaction to C
(2) being eternally committed is expensive
(3) attacker can’t know if someone has committed

C addr: {
(4) money isn’'t wasted BAL: §$

CODE: gode

send $$ to C

Submarine sends: N i
Phase 1: compute addr = H(C || nonce || code) and send $$ to addr
Phase 2: reveal addrto C.

C verifies that addr got $$ in Phase 1

C creates a contract with the specified nonce and code

C collects $$ and allows transaction
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The Hydra Project Eeha]

Hydra is a cutting-edge Ethereum contract development framework for:

decentralized security and bug bounties
rigorous cryptoeconomic security guarantees
mitigating programmer and compiler error

READ THE PAPER TRY THE ALPHA



