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ABSTRACT
Perceptual ad-blocking is a novel approach that detects online ad-
vertisements based on their visual content. Compared to traditional
filter lists, the use of perceptual signals is believed to be less prone
to an arms race with web publishers and ad networks. We demon-
strate that this may not be the case. We describe attacks on multiple
perceptual ad-blocking techniques, and unveil a new arms race that
likely disfavors ad-blockers. Unexpectedly, perceptual ad-blocking
can also introduce new vulnerabilities that let an attacker bypass
web security boundaries and mount DDoS attacks.

We first analyze the design space of perceptual ad-blockers and
present a unified architecture that incorporates prior academic and
commercial work. We then explore a variety of attacks on the ad-
blocker’s detection pipeline, that enable publishers or ad networks
to evade or detect ad-blocking, and at times even abuse its high
privilege level to bypass web security boundaries.

On one hand, we show that perceptual ad-blocking must visually
classify rendered web content to escape an arms race centered on
obfuscation of page markup. On the other, we present a concrete
set of attacks on visual ad-blockers by constructing adversarial
examples in a real web page context. For seven ad-detectors, we
create perturbed ads, ad-disclosure logos, and native web content
that misleads perceptual ad-blocking with 100% success rates. In
one of our attacks, we demonstrate how a malicious user can up-
load adversarial content, such as a perturbed image in a Facebook
post, that fools the ad-blocker into removing another users’ non-ad
content.

Moving beyond the Web and visual domain, we also build adver-
sarial examples for AdblockRadio, an open source radio client that
uses machine learning to detects ads in raw audio streams.
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1 INTRODUCTION
Online advertising is a contentious facet of the Web. Online ads
generate over $200 billion in value [90], but many Internet users
perceive them as intrusive or malicious [46, 51, 68, 93]. The grow-
ing use of ad-blockers such as Adblock Plus and uBlock [1, 7] has
sparked a fierce arms race with publishers and advertising net-
works. Current ad-blockers maintain large crowdsourced lists of
ad metadata—such as page markup and URLs. In turn, publishers
and ad networks (including Facebook [9, 88] and 30% of the Alexa
top-10K list [95]) continuously adapt and deploy small changes to
web page code in an effort to evade, or detect ad-blocking.

Towards visual ad-blocking. This arms race has prompted ad-
blockers to search for more robust signals within ads’ visual content,
as altering these would affect user experience. One such signal is
the presence of ad-disclosures such as a “Sponsored” caption or
the AdChoices logo [24]), which many ad-networks add for trans-
parency [24]. Storey et al. [81] proposed Ad-Highlighter [82], the
first perceptual ad-blocker that detects ad-disclosures by combin-
ing web-filtering rules and computer vision techniques. Motivated
by the alleged superior robustness of perceptual techniques [81],
popular ad-blockers now incorporate similar ideas. For example,
Adblock Plus supports image-matching filters [1], while uBlock
crawls Facebook posts in search for “Sponsored” captions [7].

However, as proposed perceptual ad-blockers still partially use
markup as a proxy for ads’ visual content, they appear insufficient
to end the ad-blocking arms race. For example, Facebook routinely
evades uBlock Origin using increasingly complexHTML obfuscation
for the “Sponsored” captions (see [88]). Ad-Highlighter’s computer
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vision pipeline is also vulnerable to markup tricks such as image
fragmentation or spriting (see Figure 10). Escaping the arms race
over markup obfuscation requires perceptual ad-blockers to move
towards operating on rendered web content. This is exemplified in
Adblock Plus’ Sentinel project [10], that uses deep learning to detect
ads directly in web page screenshots. On a similar note, Percival [84]
is a recently proposed ad-blocker that adds a deep learning ad-
classifier into the rendering pipeline of the Chromium and Brave
browsers. While these approaches might bring an end to the current
markup-level arms race, our paper shows that visual ad-blocking
merely replaces this arms race with a new one, involving powerful
attacks that directly target the ad-blockers’ visual classifier.

A security analysis of perceptual ad-blocking. In this paper, we
present the first comprehensive security analysis of perceptual
ad-blockers, and challenge the belief that perceptual signals will
end the ad-blocking arms race. To provide a principled analysis
of the design space of these nascent ad-blocking techniques, we
first propose a general architecture that incorporates and extends
existing approaches, e.g., Ad-Highlighter [81, 82], Sentinel [10, 61]
and Percival [84]. We view perceptual ad-blocking as a classification
pipeline, where segmented web data is fed into one of a variety of
possible ad (or ad-disclosure) detectors.

Given this unified view of the design space, we identify and ana-
lyze a variety of attacks that affect each step of the ad-classification
pipeline. Multiple adversaries—publishers, ad networks, advertisers
or content creators—can exploit these vulnerabilities to evade, de-
tect and abuse ad-blockers. Our attacks combine techniques from
Web security and from adversarial machine learning [65]. In particu-
lar, we leverage visual adversarial examples [83], slightly perturbed
images that fool state-of-the-art classifiers.

Web attacks on perceptual ad-blockers. First, we show that ad-
blocking approaches that combine traditional markup filters and
visual signals remain vulnerable to the same attacks as current
filter-lists. HTML obfuscation of ad-disclosures is already ob-
served today [88], and we demonstrate similar attacks against
Ad-Highlighter’s image-matching pipeline (e.g., by fragmenting im-
ages). Thus, unless ad-blockers move towards relying on rendered
web content (as in Sentinel [10]), perceptual signals will not end
the ongoing markup arms race with ad-networks and publishers.

In addition to visual signals, Storey et al. [81] suggest to detect
ad-disclosures using behavioral signals such as the presence of a link
to an ad-policy page. We demonstrate that such signals can lead to
serious vulnerabilities (e.g., CSRF, DDoS or click-fraud). Specifically,
we show how a Facebook user can trick Ad-Highlighter into making
arbitrary web requests in other ad-block users’ browsers.

Adversarial examples for ad-classifiers. Ad-blockers can counter
the above attacks by operating on rendered web content. The main
threat to visual ad-blockers are then adversarial examples, which
challenge the core assumption that ML can emulate humans’ visual
ad-detection. To our knowledge, our attacks are the first application
of adversarial examples to a real-world web-security problem. 1

1Gilmer et al. [31] argue that the threat model of adversarial examples—in particular
the fact that the adversary is restricted to imperceptible perturbations of a given
input—is often unrepresentative of real security threats. Perceptual ad-blocking is
a perfect example where this threat model is entirely appropriate. The ad-blocker’s
adversaries—who have white-box access to its classifier—want to evade it on specific

Figure 1: Ad-Blocker Privilege Hijacking. A malicious user,
Jerry, posts adversarial content to Facebook that fools a per-
ceptual ad-blocker similar to Sentinel [10] into marking
Tom’s benign content as an ad (red box) and blocking it in
every user’s browser.

We rigorously assess the threat of adversarial examples on seven
visual ad-classifiers: Two computer-vision algorithms (perceptual
hashing and OCR) used in Ad-Highlighter [81]; the ad-classification
neural networks used by Percival [84] and [40]; a canonical fea-
ture matching model based on the Scale-Invariant Feature Trans-
form (SIFT) [52]; and two object detector networks emulating Sen-
tinel [10]. For each model, we create imperceptibly perturbed ads,
ad-disclosure or native content, that either evade the model’s de-
tection or falsely trigger it (as a means of detecting ad-blocking).

Among our contributions is a new evasion attack [41, 73] on
SIFT [52] that is conceptually simpler than prior work [39].

Attacking perceptual ad-blockers such as Sentinel [10] presents
the most interesting challenges. For these, the classifier’s input is
a screenshot of a web page with contents controlled by different
entities (e.g, publishers and ad networks). Adversarial perturbations
must thus be encoded into HTML elements that the adversary
controls, be robust to content changes from other parties, and scale
to thousands of pages and ads.We tackle the adversary’s uncertainty
about other parties’ page contents by adapting techniques used for
creating physical adversarial examples [12, 75]. We also propose a
novel application of universal adversarial examples [56] to create a
single perturbation that can be applied at scale to all combinations
of websites and ads with near 100% success probability.

We further show that adversarial examples enable new attacks,
whereinmalicious content from one user can hijack the ad-blocker’s
high privilege to incorrectly block another user’s content. An ex-
ample is shown in Figure 1. Here Jerry, the adversary, uploads a
perturbed image to Facebook. That image is placed next to Tom’s
post, and confuses the ad-blocker into classifying Tom’s benign
post as an ad, and incorrectly blocking it. Hence, a malicious post
by one user can cause another user’s post to get blocked.

Moving beyond the Web and visual domain, we build imper-
ceptible audio adversarial examples for AdblockRadio [2], a radio
ad-blocker that uses ML to detect ads in raw audio streams.

Outlook. While visual ad-classification of rendered web content
is both sufficient and necessary to bring an end to the arms race
around page markup obfuscation, we show that this merely replaces

inputs (e.g., an ad-network cannot “sample” new ads until it finds one that evades the
ad-blocker), with attacks that the user should be oblivious to.
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Figure 2: The AdChoices Logo. AdChoices is a standard for
disclosure of behavioral advertising [24]. Ads aremarked by
the icon (a), with optional text (b). Despite creative guide-
lines [25], many variants of the logo are in use (c).

one arms race with a new one centered on adversarial examples.
Our attacks are not just a first step in this new arms race, where
ad-blockers can easily regain the upper hand. Instead, they describe
an inherent difficulty with the perceptual ad-blocking approach, as
ad-blockers operate in essentially the worst threat model for visual
classifiers. Their adversaries prepare (offline) digital attacks to evade
or falsely trigger a known white-box visual classifier running inside
the ad-blocker. In contrast, the ad-blocker must resist these attacks
while operating under strict real-time constraints.

Our study’s goal is not to downplay themerits of ad-blocking, nor
discredit the perceptual ad-blocking philosophy. Indeed, ML might
one day achieve human-level perception. Instead, we highlight
and raise awareness of the inherent vulnerabilities that arise from
instantiating perceptual ad-blockers with existing ML techniques.
Contributions. This paper makes the following contributions:
• We conduct a detailed security analysis of perceptual ad-
blocking;
• We present nine general classes of attacks against the various
components of the perceptual ad-blocking pipeline;
• We evaluate adversarial examples for eight ad classifiers (seven
visual, one audio). We make novel use of transformation-
robust [12] and universal adversarial examples [56] to create
scalable attacks robust to arbitrary changes in web content.
• We release all our data and classifiers, including a new neural
network that locates ads in web page screenshots, that may
prove useful in non-adversarial settings: https://github.com/
ftramer/ad-versarial

2 PRELIMINARIES AND BACKGROUND
2.1 The Online Advertising Ecosystem
Online advertising comprises four actors: users, publishers, ad net-
works, and advertisers. Users browse websites owned or curated
by a publisher. Publishers assigns parts of the site’s layout to ad-
vertisements. Control of these spaces is often outsourced to an ad
network that populates them with advertisers’ contents.

To protect users from deceptive ads, the Federal Trade Com-
mission and similar non-US agencies require ads to be clearly rec-
ognizable [26]. These provisions have also spawned industry self-
regulation, such as the AdChoices standard [24] (see Figure 2).

2.2 Perceptual Ad-Blocking
Perceptual ad-blocking aims at identifying ads from their content,
rather than from admetadata such as URLs andmarkup. The insight
of Storey et al. [81] is that many ads are explicitly marked—e.g., via a
“Sponsored” link or the AdChoices logo—to complywith regulations

on deceptive advertising. They developed Ad-Highlighter [82], an
ad-blocker that detects ad-disclosures using different perceptual
techniques: (i) textual searches for “Sponsored” tags, (ii) fuzzy image
search and OCR to detect the AdChoices logo, and (iii) “behavioral”
detection of ad-disclosures by identifying links to ad-policy pages.
Ad-blockers that rely on perceptual signals are presumed to be less
prone to an arms race, as altering these signals would affect user
experience or violate ad-disclosure regulations [81].

Perceptual ad-blocking has drawn the attention of major ad-
blockers, that have integrated visual signals into their pipelines. For
example, uBlock blocks Facebook ads by detecting the “Sponsored”
caption. Adblock Plus has added support for image-matching rules,
which are easily extended to fuzzy image search [8].

The above perceptual ad-blocking approaches still rely on some
markup data as a proxy for ads’ visual content. This has prompted
an ongoing arms race between Facebook and uBlock (see [88])
where the former continuously obfuscates the HTML tags that ren-
der its “Sponsored” tag—a process that is invisible to the user. This
weakness is fundamental to perceptual approaches that rely on
signals with an indirect correspondence to ads’ rendered content.
This insight led Adblock Plus to announce the ambitious goal of
detecting ads directly from rendered web pages—with no reliance
on markup—by leveraging advances in image classification. Their
Sentinel [10] project uses an object-detection neural network to
locate ads in raw Facebook screenshots. The recently released Perci-
val project [84] targets a similar goal, by embedding a deep-learning
based ad-blocker directly into Chromium’s rendering engine.

2.2.1 Design and Goals. Ad-blockers are client-side programs run-
ning in browsers at a high privilege level. They can be implemented
as browser extensions or integrated in the browser. We ignore DNS
ad-blockers (e.g., Pi-hole) as these cannot use perceptual signals. 2

The goal of ad-blockers is to identify and hide ads, while guard-
ing against website breakage [4] resulting from the removal of
functional content. As opposed to network-level filters, perceptual
signals only apply to downloaded Web content and are thus unsuit-
able for some secondary goals of ad-blockers, such as bandwidth
saving or blocking of user tracking and malvertising [46, 51, 68, 93].

Ad-blockers may strive to remove ads without being detected
by the publisher. For example, many websites try to detect ad-
blockers [58] and take according action (e.g., by asking users to
disable ad-blockers). As perceptual ad-blockers do not interfere with
web requests, they are undetectable by the web-server [81]. How-
ever, the publisher’s JavaScript code can try to detect ad-blockers
by observing changes in the DOM page when hiding ads.

Finally, perceptual ad-blockers have strict timing constraints,
and should process a web page and detect ads in close to real-time.

2.2.2 Algorithms for Visual Ad Classification. The identification of
ads or ad-disclosures can be achieved using a variety of computer
vision techniques. Below, we describe existing approaches.
• Template matching. Ad-Highlighter detects the AdChoices logo
by comparing each image in a page to a template using average

2While our work focuses on the desktop browser setting, perceptual ad-blocking
might also prove useful in the mobile domain. Current mobile ad-blockers are often
part of a custom browser, or act as web proxies—an insufficient approach for native
apps that prevent proxying using certificate pinning. Instead, a perceptual ad-blocker
(potentially with root access) could detects ads directly from app screenshots
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hashing: for each image, a hash is produced by resizing the
image to a fixed size and setting the ith bit in the hash to 1 if
the ith pixel is above the mean pixel value. An image matches
the template if their hashes have a small Hamming distance.
A more robust template matching algorithm is the Scale Invari-
ant Feature Transform (SIFT) [52], which creates an image hash
from detected “keypoints” (e.g., edges and corners).
• Optical Character Recognition. To detect the rendered text in-
side the AdChoices logo, Ad-Highlighter uses the open-source
Tesseract OCR system [6]. Tesseract splits an image into over-
lapping frames and transcribes this sequence using a neural
network. Ad-Highlighter matches images for which the OCR
output has an edit-distance with “AdChoices” below 5.
• Image Classification. Albeit not in an ad-blocking context, Hus-
sain et al. [40] have demonstrated that neural networks could be
trained to distinguish images of ads from non-ads (without the
presence of any explicit ad-disclosures). The Percival project
trained a similar neural network to classify image frames in
real-time within Chromium’s rendering pipeline [84].
• Object Detection. Sentinel [10] detects ads in rendered web pages
using an object detector network based on YOLOv3 [72]. The
network’s output encodes locations of ads in an image. The
YOLOv3 [72] model outputs bounding box coordinates and
confidence scores for B = 10,647 object predictions, and retains
those with confidence above a threshold τ = 0.5.

2.3 Threat Model and Adversaries
We adopt the terminology of adversarial ML [65], where the de-
fenders are users of a classifier (the ad-blocker) that its adversaries
(e.g., ad networks or publishers) are trying to subvert.

Publishers, ad networks, and advertisers have financial incen-
tives to evade or detect ad-blockers. We assume that publishers
and ad networks are rational attackers that abide by regulations
on online advertising, and also have incentives to avoid actively
harming users or disrupting their browsing experience. As shown
in prior work [67, 93], this assumption fails to hold for advertisers,
as some have abused ad-networks for distributing malware. We
assume that advertisers and content creators (e.g., a Facebook user)
may try to actively attack ad-block users or other parties.

As ad-blockers are client-side software, adversaries can down-
load and inspect their code offline. However, we assume that adver-
saries do not know a priori whether a user is running an ad-blocker.

Attacking ad-blockers. The primary adversarial goal of publish-
ers, ad-networks and advertisers is to evade the ad-blocker’s detec-
tion and display ads to users. These adversaries may modify the
structure and content of web pages or ads to fool the ad-detector.

Alternatively, the ad-blocker’s adversaries may try to detect its
presence, to display warnings or deny access to the user. A common
strategy (used by 30% of publishers in the Alexa top-10k) adds fake
ad-content (honeypots) to a page and uses JavaScript to check if the
ads were blocked [95]. This practice leads to an orthogonal arms
race on ad-block detection [57, 58, 60] (see Appendix A).

Adversaries may also try to abuse ad-blockers’ behaviors to
degrade their usability (e.g., by intentionally causing site-breakage
or slow performance). The viability of such attacks depends on the

adversary’s incentives to avoid disrupting ad-block users’ browsing
experience (e.g., Facebook adds honeypots to regular user posts to
cause site-breakage for ad-block users [88]).

Finally, attackers with no ties to the online advertisement ecosys-
tem may try to hijack an ad-blocker’s high privilege-level in other
users’ machines. Such attackers can act as advertisers or content
creators to upload malicious content that exploits an ad-blocker’s
vulnerabilities. Figure 1 shows one example of such an attack, where
amalicious Facebook user uploads content that tricks the ad-blocker
into hiding an honest user’s posts. We will also show how Face-
book users can exploit Ad-Highlighter’s behavioral ad-blocking to
trigger arbitrary web requests in other users’ browsers.

2.4 Adversarial Examples
The attacks presented in this paper combines techniques from Web
security and from adversarial machine learning. In particular, we
leverage adversarial examples [83] to fool perceptual ad-classifiers.

An adversarial example for an input x of a model f is an input
x̂ = x + δ , where δ is a “small” perturbation such that x̂ is misclas-
sified with high confidence. We will consider perturbations with
small ℓ2 norm (Euclidean) or ℓ∞ norm (maximum per-pixel change).
To cause a model f to misclassify x + δ we would minimize the
confidence of f (x + δ ) in the true class, while also keeping δ small.
This is often achieved by minimizing a differentiable loss function
L (x + δ ) that acts as a proxy for the adversarial goal.

An effective algorithm for finding adversarial examples is Pro-
jected Gradient Descent (PGD) [48, 53]. Given an allowable pertur-
bation set (e.g., | |δ | |∞ ≤ ϵ), we repeatedly update δ in the gradient
direction −∇δL (x + δ ) and project back onto the allowable set.

In some cases, we will want perturbations to be re-usable so
that an attack can scale to a large number of websites or ads. A
perturbation that can be re-used for many different inputs is called
a universal adversarial example [56]. It is usually created by jointly
minimizing ∑i L (x (i ) + δ ) over many inputs x (i ) , for a common δ .

3 DESIGNING PERCEPTUAL AD-BLOCKERS
To analyze the security of perceptual ad-blockers, we first pro-
pose a unified architecture that incorporates and extends prior and
concurrent work (e.g., Ad-Highlighter [81], visual filter-lists [8],
Sentinel [10], and the recent Percival patch for Chromium’s ren-
dering engine). We explore different ways in which ad-blockers
can integrate perceptual signals, and identify a variety of computer
vision and ML techniques that can be used to visually identify ads.

To simplify exposition, we restrict our analysis to ad-blockers
that only rely on perceptual signals. In practice, these signals are
likely to be combined with existing filter lists (as in uBlock [88] or
Adblock Plus [8]) but the details of such integrations are orthogonal
to our work. We note that an ad-blocker that combines perceptual
signals with filter lists inherits the vulnerabilities of both, so our
security analysis applies to these hybrid approaches as well.

3.1 General Architecture
A perceptual ad-blocker is defined by a collection of offline and
online steps, with the goal of creating, maintaining and using a
classifier to detect ads. Figure 3 shows our unified architecture for
perceptual ad-blockers. The ad-blocker’s core visual classifier can
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Figure 3: TheArchitecture of a Perceptual Ad-Blocker. In the offline phase, an ad-classifier is trained onweb data. In the online
phase, the ad-blocker segments visited pages (1), classifies individual elements (2), and renders the user’s ad-free viewport (3).

range from classical computer vision as in Ad-Highlighter [82] to
large ML models as in Sentinel [10].

The classifier may be trained using labeled web data, the type and
amount of which varies by classifier. Due to continuous changes
in web markup, ad-blockers may need regular updates, which can
range from extending existing rules (e.g., for Ad-Highlighter [81,
82]) to re-training complex ML models such as Sentinel [10].

When deployed by a user, the ad-blocker analyzes data from vis-
ited pages to detect and block ads in real-time. Ad detection consists
of three main steps. (1) The ad-blocker optionally segments the web
page into smaller chunks. (2) A classifier labels each chunk as ad
or non-ad content. (3) The ad-blocker acts on the underlying web
page based on these predictions (e.g., to remove HTML elements
labeled as ads). For some ad-classifiers, the segmentation step may
be skipped. For example, Sentinel [10] uses an object-detection
network that directly processes full web page screenshots.

Ad-Highlighter’s use of behavioral signals (i.e., recognizing ad-
disclosures by the presence of a link to an ad-policy page) can be
seen as a special type of classifier that may interact with segmented
Web elements (e.g., by clicking and following a link).

3.2 Approaches to Ad Detection
When online, a perceptual ad-blocker’s first action is the “Page
Segmentation” step that prepares inputs for the classifier. Figure 4
illustrates different possible segmentations. A cross-origin iframe
(red box 3) displays an ad and an AdChoices icon (purple box 2). An
additional textual ad-disclosure is added by the publisher outside
the iframe (purple box 1). Publishers may use iframes to display
native content such as videos (e.g., red box 4).

We distinguish three main perceptual ad-blocking designs that
vary in the granularity of their segmentation step, and in turn in
the choice of classifier and actions taken to block ads.
• Element-based perceptual ad-blockers, such as Ad-Highlighter,
search a page’s DOM tree for HTML elements that identify ads,
e.g., the AdChoices logo or other ad-disclosures.
• Page-based perceptual ad-blockers, e.g., Sentinel [10], ignore the
DOM and classify images of rendered web pages.
• Frame-based perceptual ad-blockers, e.g., Percival [84], classify
rendered content but pre-segment pages into smaller frames.

3.2.1 Element-based Perceptual Ad-blocking. These ad-blockers
segment pages into HTML elements that are likely to contain ad-
disclosures. The segmentation can be coarse (e.g., Ad-Highlighter

extracts all img tags from a page) or use custom filters as in Adblock
Plus’ image search [8] or Ublock’s Facebook filters [88].

For textual ad-disclosures (e.g., Facebook’s “Sponsored” tag) the
classification step involves trivial string matching. Facebook is thus
deploying HTML obfuscation that targets an ad-blocker’s ability
to find these tags [88]. This ongoing arms race calls for the use of
visual (markup-less) detection techniques. Ad-disclosure logos (e.g.,
the AdChoices icon) can be visually classified using template match-
ing. Yet, due to many small variations in ad-disclosures in use, exact
matching (as in Adblock Plus [8]) is likely insufficient [81]. Instead,
Ad-Highlighter uses perceptual hashing to match all img elements
against the AdChoices logo. Ad-Highlighter also uses supervised
ML—namely Optical Character Recognition (OCR)—to detect the
“AdChoices” text [82]. Once an ad-disclosure is identified, the asso-
ciated ad is found using custom rules (e.g., when Ad-Highlighter
finds an AdChoices logo, it blocks the parent iframe).

Storey et al. [81] further suggest to detect ads through behavioral
signals that capture the ways in which users can interact with them,
e.g., the presence of a link to an ad-policy page.

3.2.2 Frame-based Perceptual Ad-blocking. The above element-
based approaches require mapping elements in the DOM to ren-
dered content (to ensure that elements are visible, and to map
detected ad-identifiers to ads). As we show in Section 4.4, this step
is non-trivial and exploitable if ad-blockers do not closely emulate
the browser’s DOM rendering, a complex process that varies across
browsers. For instance, image fragmentation or spriting (see Fig-
ure 10) are simple obfuscation techniques that fool Ad-Highlighter,
and would engender another cat and mouse game. To avoid this, ad-
blockers can directly operate on rendered images of a page, which
many browsers (e.g., Chrome and Firefox) make available to exten-
sions. Instead of operating on an entire rendered web page (see
page-based ad-blockers below), DOM features can still be used to
segment a page into regions likely to contain ads. For example, seg-
menting a page into screenshots of each iframe is a good starting
point for detecting ads from external ad networks. The approach
of Percival is also frame-based but directly relies on image frames
produced during the browser’s rendering process [84].

We consider twoways to classify frames. The first searches for ad-
disclosures in rendered ads. Template-matching is insufficient due
to the variability of backgrounds that ad-disclosures are overlaid on.
Instead, we view this as an object-detection problem and address
it with supervised ML. The second approach is to train a visual
classifier to directly detect ad content. Hussain et al. [40] report
promising results for this task. Percival also relies on a lightweight
deep learning model to classify frames as ad content [84].
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Figure 4: Perceptual Ad-Blocking Elements. An ad (box #1) is
displayed in an iframe, that contains anAdChoices icon (box
#2). A custom ad-disclosure from the publisher is outside the
iframe (box #3). Publishers can use iframes to display non-
ad content such as videos (box #4).

3.2.3 Page-based Perceptual Ad-blocking. The core idea of percep-
tual ad-blocking is to emulate the way humans detect ads. Element-
and frame-based approaches embrace this goal to some extent,
but still rely on DOM information that humans are oblivious to.
Recently, Adblock Plus proposed an approach that fully emulates
visual detection of online ads from rendered web content alone [10].

In a page-based ad-blocker, segmentation is integrated into the
classifier. Its core task is best viewed as an object-detection problem:
given a web page screenshot, identify the location and dimension
of ads. Adblock Plus trained the YOLOv3 object-detector [72] on
screenshots of Facebook with ads labeled using standard filter-lists.

Once ad locations are predicted, the ad-blocker can overlay them
to hide ads, or remove the underlying HTML elements (e.g., by
using the document.elementFromPoint browser API to get the
HTML element rendered at some coordinate).

4 ATTACKS ON PERCEPTUAL AD-BLOCKING
Given the unified architecture from Section 3, we now perform
a comprehensive security analysis of the perceptual ad-blocking
pipeline and describe multiple attacks targeting concrete instantia-
tions of each of the ad-blocker’s components. The primary focus of
our analysis is to evaluate the robustness of the ad-blocker’s core
visual classifier, by instantiating adversarial examples for seven
different and varied approaches to ad-detection (Section 4.2). We
further demonstrate powerful attacks that exploit the ad-blocker’s
high-privilege actions (Section 4.3).We conclude by describingmore
classical attacks that affect the segmentation step of current per-
ceptual ad-blockers (Section 4.4), as well as potential attacks on an
ad-blocker’s offline data collection and training phase (Section 4.5).

Our attacks can be mounted by different adversaries (e.g., pub-
lishers, ad-networks, or malicious third parties) to evade or detect
ad-blocking and, at times, abuse the ad-blocker’s high privilege level
to bypass web security boundaries. These attacks, summarized in
Table 2, challenge the belief that perceptual signals can tilt the
arms race with publishers and ad-networks in favor of ad-blockers.
All our data, pre-trained models, and attack code are available at
https://github.com/ftramer/ad-versarial.

The attacks described in this section do not violate existing laws
or regulations on deceptive advertising, as the changes to the visual
content of a page are imperceptible to human users.

4.1 Evaluation Setup
4.1.1 Evaluated Approaches. We analyze a variety of techniques
to instantiate the different stages of the perceptual ad-blocking
pipeline. In particular, we evaluate seven distinct approaches to the
ad-blocker’s core visual ad-classification step (see Table 1). Three
are element-based, three frame-based, and one page-based. These
seven classifiers are taken from or inspired by prior work. They are:
Two computer vision algorithms used in Ad-Highlighter [81, 82]
(average hashing and OCR); two ad classifiers, one from Hus-
sain et al. [40] and one used in Percival [84]; a robust feature
matcher, SIFT [52]; and two object detector networks—with the
same YOLOv3 model [72] as Sentinel [10, 61]—which we trained to
detect either ad-disclosures in frames, or ads in a full web page.

For the two object detector models we built, we explicitly sepa-
rated (i.e., assigned to non-communicating authors) the tasks of (1)
data-collection, design and training; and (2) development of attacks,
to ensure fair evaluation results. Our first (frame-based) model was
trained to detect AdChoices logos that we overlaid in a dataset
of 6,320 ads collected by Hussain et al. [40]. We then classify an
iframe as an ad, if the model detects the AdChoices logo in it.

Our second model emulates the approach of the unreleased Sen-
tinel [10, 61] and was trained to detect ads in arbitrary news web-
sites. This broadens Sentinel’s original scope (which was limited
to Facebook)—a decision we made due to difficulties in collecting
sufficient training data [61]. One author trained YOLOv3 to locate
ads in screenshots of news websites from all G20 nations. To collect
a diverse dataset of labeled ads in web screenshots, we first locates
ads using a web-proxy based on filter lists, and then randomly re-
place ads with a larger variety of examples. More details about this
process, of independent interest, are in Appendix B. A video of our
model in action on fivewebsites not seen during training is available
at https://github.com/ftramer/ad-versarial/blob/master/videos.

4.1.2 Evaluation Data. We use real website data to evaluate the
accuracy and robustness of the above seven ad-classifiers. We built
an evaluation set from the top ten news websites in the Alexa
ranking (see Table 3). For each website, we extract the following
data:
(1) All images smaller than 50KB in the DOM. This data is used to

evaluate element-based techniques. We collect 864 images, 41 of
which are AdChoices logos (17/41 logos contain the “AdChoices”
text in addition to the icon).

(2) A screenshot of each iframe in the DOM tree, to evaluate frame-
based models. We collect 59 frames. Of these, 39 are ads and 29
contain an AdChoices logo. Percival [84] only considers images
of dimension at least 100 × 100 px so we limit it to these.3

3Taking a screenshot of an iframe is an approximation of how Chromium’s render-
ing engine segments frames for Percival’s classifier. We verified that our attacks on
Percival’s network work when deployed inside the Chromium browser.

https://github.com/ftramer/ad-versarial
https://github.com/ftramer/ad-versarial/blob/master/videos


Table 1: Evaluation of Ad-Classifiers. For each classifier, we first evaluate on “benign” data collected from websites. We report
false-positives (FP)—mis-classified non-ad content—and false negatives (FN)—ad-content that the classifier missed. We then
give the the attack model(s) considered when evading the classifier, the success rate, and the corresponding section.

Benign Eval. Adversarial Eval.
Category Method Targets FP FN Attack Model for Evasion Success

Element-based
Blacklist AdChoices logos 0/824 33/41 N.A. -
Avg. hash [81] AdChoices logos 3/824 3/41 Add ≤ 3 empty rows/cols 100%
SIFT textual AdChoices 2/824 0/17 ℓ2 ≤ 1.5 100%
OCR [81] textual AdChoices 0/824 1/17 ℓ2 ≤ 2.0 100%

Frame-based YOLOv3 AdChoices in iframe 0/20 5/29 ℓ∞ ≤ 4/255 100%
ResNet [40] ad in iframe 0/20 21/39 ℓ∞ ≤ 2/255 100%
Percival [84] large ads in iframe 2/7 3/33 ℓ∞ ≤ 2/255 100%

Page-based YOLOv3 ads visible in page screenshot 2 6/30 Publisher: universal full-page mask (99% transparency) 100%
Publisher: adv. content below ads on BBC.com, ℓ∞ ≤ 3/255 100%
Ad network: universal mask for ads on BBC.com, ℓ∞ ≤ 4/255 95%

(3) Two screenshots per website (the front-page and an article)
taken in Google Chrome on a 1920 × 1080 display.4 These are
used to evaluate page-based models. Each screenshot contains
1 or 2 fully visible ads, with 30 ads in total.

For template-matching approaches (perceptual hashing and SIFT)
we use the same 12 AdChoices templates as Ad-Highlighter [82].

When describing an ad-blocker’s page segmentation and the cor-
responding markup obfuscation attacks in Section 4.4, we use some
data collected on Facebook.com in November 2018. As Facebook
continuously and aggressively adapts the obfuscation techniques
it uses to target ad-blockers [88], the specific attacks we describe
may have changed, which only goes to illustrate the ongoing arms
race and need for more robust markup-less ad-blocking techniques.

4.1.3 Accuracy and Performance of ML Classifiers. Table 1 reports
the accuracy of the seven ad-classifiers on our evaluation data. For
completeness, we include a blacklist that marks any image that ex-
actly matches one of the 12 AdChoices logos used in Ad-Highlighter.
As posited by Storey et al. [81], this approach is insufficient.

Note that the datasets described above are incomparable. Some
ads are not in iframes, or have no ad-disclosure, ans screenshots
only contain images within the current view. Thus, the accuracy
of the classifiers is also incomparable. This does not matter, as our
aim is not to find the best classifier, but to show that all of them
are insecure in the stringent attack model of visual ad-blockers.

Overall, element-based approaches have high accuracy but may
suffer from some false-positives (i.e., non-ad content classified as
ads) that can lead to site-breakage. The frame-based approaches are
less accurate but have no false-positives. Finally, our Sentinel-like
detector shows promising (albeit imperfect) results that demon-
strate the possibility of ad-detection on arbitrary websites.

We measure performance of each classifier on an Intel Core i7-
6700 Skylake Quad-Core 3.40GHz. While average hashing and SIFT
process all images in a page in less than 4 seconds, OCR is much
slower (Ad-Highlighter disables it by default). Our OCR model
parses an image in 100 ms, a 14 second delay on some websites.

4We experimentally verified that our attacks on page-based ad-blockers are robust to
changes in the user’s viewport. An attacker could also explicitly incorporate multiple
browsers and display sizes into its training set to create more robust attacks. Alterna-
tively, the adversary could first detect the type of browser and viewport (properties
that are easily and routinely accessed in JavaScript) and then deploy “responsive”
attacks tailored to the user’s setting.

The frame-based classifiers process all iframes in 1-7 seconds. Our
page-based model processes pages downsized to 416 × 416px at 1.5
frames-per-second (on CPU), which may suffice for ad-blocking.
The authors of Percival recently demonstrated that an optimized de-
ployment of perceptual ad-blocking with a deep learning classifier
incurs only minimal overhead on page rendering (< 200 ms).

4.2 Attacks against Classification with
Adversarial Examples

For perceptual ad-blockers that operate over images (whether on
segmented elements as in Ad-Highlighter [82], or rendered content
as in Sentinel [10] or Percival [84]), security is contingent on the
robustness of the ad-blocker’s visual classifier. False negatives result
in ads being shown, and false positives cause non-ads to be blocked.

Both error types are exploitable using adversarial examples [33,
83]—small input perturbations that fool a classifier. Adversarial
examples can be used to generate web content that fools the ad-
blocker’s classifier, without affecting a user’s browsing experience.

In this section, we describe and evaluate four concrete types of
attacks on the seven visual classifiers we consider: (C1) adversarial
ad-disclosures that evade detection; (C2) adversarial ads that evade
detection; (C3) adversarial non-ad content that alters the classifier’s
output on nearby ads; (C4) adversarial honeypots (misclassified non-
ad elements, to detect ad-blocking). Our attacks allow adversaries
to evade or detect ad-blocking with (near)-100% probability.

Attack Model. We consider adversaries that perturb web content
to produce false-negatives (to evade ad-blocking) or false-positives
(honeypots to detect ad-blocking). Each attack targets a single
classifier—but is easily extended to multiple models (see Section 5).
• False negative. To evade ad-blocking, publishers, ad networks or
advertisers can perturb any web content they control, but aim
to make their attacks imperceptible. We consider perturbations
with small ℓ2 or ℓ∞ norm (for images with pixels normalized to
[0,1])—a sufficient condition for imperceptibility. An exception
to the above are our attacks on average hashing, which is by
design invariant to small ℓp changes but highly vulnerable to
other imperceptible variations. The attack model used for all
evasion attacks are summarized in Table 1.
• False positive. The space of non-disruptive false positive attacks
is vast. We focus on one easy-to-deploy attack, that generates
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Table 2: Attack Strategies on Perceptual Ad-Blockers. Strate-
gies are grouped by the component that they exploit—
(D)ata collection, (S)egmentation, (C)lassification, (A)ction.
For each strategy, we specify which goals it can achieve,
which adversaries can execute it, and which ad-blockers it
applies to (fully:  or partially: G#).
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D1: Data Training Poisoning           

S1: DOM Obfuscation   #   ##  G# #
S2: Resource Exhaustion (over-Segmentation)  ##   G#G#  G# #

C1: Evasion with Adversarial Ad-Disclosures  ## # ##  # #
C2: Evasion with Adversarial Ads  ## #  # #  
C3: Evasion with Adversarial Content  ##  ## ##  
C4: Detection with Adversarial Honeypots # #  ###    

A1: Cross-Boundary Blocking ## ##  ##  
A2: Cross-Origin Web Requests ## ##   # #

near-uniform rectangular blocks that blend into the page’s back-
ground yet falsely trigger the ad-detector.

We assume the publisher controls the page’s HTML and CSS,
but cannot access the content of ad frames. This content, including
the AdChoices logo, is added by the ad network.

Gilmer et al. [31] argue that the typical setting of adversarial
examples, where the adversary is restricted to finding imperceptible
perturbations for given inputs, is often unrepresentative of actual se-
curity threats. Interestingly, the threat model for visual ad classifiers
does align perfectly with this setting. The ad-blocker’s adversaries
want to evade its classifier for a specific input (e.g., the publisher’s
current web page and an advertiser’s latest ad campaign), while
ensuring that the users’ browsing experience is unaffected.

4.2.1 Overview of Attack Techniques and Results. For all seven ad-
classifiers, we craft imperceptible adversarial perturbations for ad-
disclosures, ads and other web content, which can be used by pub-
lishers, ad-networks, or advertisers to evade or detect ad-blocking.

Some of our classifiers can be attacked using existing techniques.
For example, we show that ad-networks and publishers can use
standard gradient-based attacks (see Section 2.4) to create imper-
ceptibly perturbed ads or background content that fool our two
frame-based classifiers with 100% success rates (see Figure 6). We
verify that similar attacks bypass the model used in Percival [84].

Attacking element-based classifiers is less straightforward, as
they operate on small images (adversarial examples are presumed
to be a consequence of high dimensional data [32]), and some rely
on traditional computer vision algorithms (e.g., average hashing or
SIFT) for which gradient-based attacks do not apply. Nevertheless,
we succeed in creating virtually invisible perturbations for the
AdChoices logo, or background honeypot elements, that fool these
classifiers (see Figure 5). Our attacks on Ad-Highlighter’s OCR
network build upon prior work by Song and Shmatikov [79]. For
non-parametric algorithms such as SIFT, we propose a new generic
attack using black-box optimization [41, 73] (see Section 4.2.2), that
is conceptually simpler than previous attacks [39].

Our most interesting attacks are those that target page-based
ad-blockers such as Sentinel [10] (see Figure 8, as well as Figure 14).
Our attacks let publishers create perturbed web content to evade
or detect ad-blocking, and let ad-networks perturb ads that evade
ad-blocking on the multitude of websites that they are deployed in.
These attacks overcome a series of novel constraints.

First, attacks on visual ML classifiers often assume that the adver-
sary controls the full digital image fed to the classifier. This is not
the case for page-based ad-blockers, whose input is a screenshot of
a web document with content controlled by different actors (e.g., ad
networks only control the content of ad frames, while publishers
can make arbitrary website changes but cannot alter ads loaded
in cross-origin iframes). Moreover, neither actor precisely knows
what content the other actors will provide. Adversarial examples for
page-based ad-blockers thus need to be encoded into the HTML ele-
ments that the adversary controls, and must be robust to variations
in other page content. We solve this constraint with techniques
similar to those used to make physical-world adversarial examples
robust to random transformations [28, 48, 75]. We consider multiple
tricks to encode a publisher’s perturbations into valid HTML One
attack uses CSS rules to overlay a near-transparent perturbed mask
over the full page (Figure 8 (b)). To detect ad-blocking, we craft an
innocuous page-footer that triggers the ad-blocker (Figure 8 (d)).
Details on our attacks are in Section 4.2.2.

A further challenge is the deployment of these attacks at scale,
as creating perturbations for every ad and website is intractable.
This challenge is exactly addressed by attacks that create universal
adversarial examples [56]—single perturbations that are crafted so
as to be effective when applied to most classifier inputs. Universal
perturbations were originally presented as a curious consequence
of the geometry of ML classifiers [56], and their usefulness for the
scalability of attacks had not yet been suggested.

Attacks on page-based ad-blockers have unique constraints, but
also enable unique exploits. Indeed, as a page-based classifier pro-
duces outputs based on a single full-page input, perturbing content
controlled by the attacker can also affect the classifier’s outputs
on unperturbed page regions. The effectiveness of such attacks
depends on the classifier. For the YOLOv3 [72] architecture, we
show that publishers can perturb website content near ad iframes
so as to fool the classifier into missing the actual ads (see Figure 14).

4.2.2 Algorithms for Adversarial Examples. For some of the consid-
ered classifiers, adversarial examples for each of the attack strategies
C1-C4 in Table 2 can be constructed using existing and well-known
techniques (see Section 2.4). Below, we provide more details on the
attack we use to target SIFT, and on the techniques we use to create
robust and scalable attacks for page-based classifiers [10].

Black-box optimization attacks for non-parametric classifiers. SIFT
is a non-parametric algorithm (i.e., with no learned parameters). As
such, the standard approach for generating adversarial examples by
minimizing the model’s training-loss function does not apply [83].
To remedy this, we first formulate a near-continuous loss function
LSIFT (x + δ ) that acts as a proxy for SIFT’s similarity measure
between the perturbed image x + δ and some fixed template. The
next difficulty is that this loss function is hard to differentiate, so we
use black-box optimization techniques [41, 73] to minimize LSIFT.



SIFT’s output is a variable-sized set of keypoints, where each
keypoint is a vector v ∈ R132—four positional values, and a 128-
dimensional descriptor [52]. Let t be a template with keypoint de-
scriptorsT . Tomatch an image x against t , SIFT computes descriptor
vectors for x , denoted {v1, . . . ,vm }. Then, for each vi it finds the
distances di,1,di,2 to its two nearest neighbors in T . The keypoint
vi is a match if the ratio test di,1/di,2 < τ holds (where τ = 0.6). Let
M (x ,t ) be the keypoints of x that match with t . To evade detection,
we minimize the size ofM via the following proxy loss:

LSIFT (x + δ ) B
∑

vi ∈Mτ (x,t )
di,2/di,1 . (1)

Minimizing L increases d ·,1/d ·,2 for matched keypoints until they
fall below the ratio test. To create false positives, we minimize an
analogous loss that sums overvi < Mτ (x ,t ) and decreases the ratio.

Scalable attacks with partial input control. When attacking page-
based classifiers, we need to overcome two challenges: (1) the at-
tacker only controls part of the page content and does not know
which content other actors will add; (2) the attacks should be de-
ployable at scale for a variety of web pages and ads. To create
adversarial examples under these novel constraints, we combine
universal [56] and transformation-robust [29, 48, 75] attacks.

To create universal perturbations, we collect additional website
screenshots: Dtrain is a set of 200 screenshots of news websites,
and Deval contains the 20 screenshots collected in Section 4.1 (no
website or ad appears in both sets). We also collect Dtrain

BBC and Deval
BBC

with 180 and 20 screenshots from bbc.com/sports. The training sets
are used to create perturbations that work for arbitrary websites or
ads. We measure attacks’ success rates on the evaluation sets.

We craft a perturbation δ by minimizing ∑x ∈D train
∗
L (x ⊙ δ ),

where x ⊙ δ means applying the perturbation δ to a page x . De-
pending on the attack, the perturbation is added pixel-wise to a
page region that the adversary controls, or replaces that region
with δ . All that remains is the design of a suitable loss function L.

The YOLOv3 model we trained outputs multiple B = 10,647
boxes for detected ads, and retains a boxb if its confidence—denoted
conf( f (x ),b)—is larger than a threshold τ . To cause ads to be un-
detected, we thus minimize the following loss which causes all B
boxes to have confidence below τ − κ, for some slack κ > 0:

LFN
YOLO (x ⊙δ ) B

∑
1≤b≤B

max (conf( f (x ⊙ δ ),b) − (τ − κ),0) , (2)

For false-positives, i.e., a fake object prediction, we instead in-
crease all boxes’ confidence up to τ + κ by minimizing:

LFP
YOLO (x ⊙ δ ) B

∑
1≤b≤B

max (τ + κ − conf( f (x ⊙ δ ),b),0) . (3)

4.2.3 Evaluation of Attacks. We now instantiate and evaluate the
attack strategies C1-C4 from Table 2 on our seven ad-classifiers

Attack C1: Evasion with adversarial ad-disclosures. Figure 5 shows
examples of perturbed AdChoices logos that fool all element-based
classifiers. An ad-network can use these to evade ad-blocking.

Average hashing is invariant to small ℓp noise, but this comes at
the cost of high sensitivity to other perturbations: we evade it by
adding up to 3 transparent rows and columns to the logo. When
overlaid on an ad, the rendered content is identical.

Original Avg. Hash OCR SIFT

False Positives:

Figure 5: Adversarial Examples for Element-Based Classi-
fiers. These correspond to attacks (C1) and (C4) in Table 2.

Original False Negative False Positive

Figure 6: Adversarial Examples for Frame-based Classifiers.
These are attacks (C2) and (C4) in Table 2. Top: Attacks on
our YOLOv3model that detects the AdChoices logo. Bottom:
attacks on the ad-classifier from [40] (we crafted similar ad-
versarial examples for the classifier used in Percival [84])

Adversarial examples for OCR bear similarities to CAPTCHAs.
As ML models can solve CAPTCHAs [15, 94], one may wonder
why transcribing ad disclosures is harder. The difference lies in
the stronger threat model that ad-blockers face. Indeed, CAPTCHA
creators have no access to the MLmodels they aim to fool, and must
thus craft universally hard perturbations. Attacking an ad-blocker
is much easier as its internal model must be public. Moreover the
ad-blocker must also prevent false positives—which CAPTCHA
solvers do not need to consider—and operate under stricter real-
time constraints on consumer hardware.

Attack C2: Evasion with adversarial ads. Ad networks can di-
rectly perturb the ads they server to evade frame or page-based
ad-blockers. For frame-based classifiers, the attacks are very sim-
ple and succeed with 100% probability (see Figure 6). We verified
that the ad-classifier used by Percival [84] is vulnerable to similar
attacks. Specifically, we create a valid HTML page containing two
images—an ad and an opaque white box—which are both misclassi-
fied when the page is rendered in Percival’s modified Chromium
browser (see Figure 13).

For our page-based model, crafting a “doubly-universal” pertur-
bation that works for all ads on all websites is hard (this is due to
the model’s reliance on page layout for detecting ads, see Appen-
dix B for details). Instead, we show that an ad-network can create a
universal perturbation that works with 100% success rate for all ads
that it serves on a specific domain (see Figure 14). For this attack,
we minimized the LFN

YOLO loss over the collected screenshots in
Dtrain
BBC , by applying the same perturbation δ over all ad frames.

bbc.com/sports


(a) Original Page: two ads are detected. (b) Attack C3 (Universal): The publisher overlays a transparent mask
over the full page to evade the ad-blocker.

(c) Attack C3 (Universal): The publisher overlays a mask on the page
to generate unreasonably large boxes and disable the ad-blocker.

(d) Attack C4 (Universal): The publisher adds an opaque footer to de-
tect an ad-blockers that blocks the honeypot element (bottom-left).

Figure 8: Universal Adversarial Examples for Page-Based Ad-Blockers. Displays examples of universal evasion attacks (C3)
and detection attacks (C4) on a page from theguardian.com. Best viewed with 2x zoom in.

<div id="overlay"></div>

#overlay {
background-image: url("data:image/png;base64,...");
width: 100%; height: 100%; top: 0; left: 0;
position: fixed; z-index: 10000; pointer-events: none;
opacity: 0.01; }

Figure 7: Code for Attack C4-U. An adversarial mask is tiled
over the full page with a small opacity factor.

Attack C3: Evasion with adversarial content. These attacks ap-
ply to page-based ad-blockers and allow publishers to evade ad-
blocking while only perturbing HTML elements that they control
(which crucially does not include the content of ad-frames). We
show that a publisher can actually perturb the full screenshot image
fed into the classifier using CSS techniques. TheHTML perturbation
is a near-transparent mask, that is overlaid on the entire web page
(see Figure 7). The CSS properties z-index and pointer-events
are used to display the mask over all other web content, but allow
underlying elements to still be accessed and clicked normally.

Adding a mask over the full image is prohibitive, as the mask
would be large and tied to a fixed resolution. We thus build a smaller
mask and tile it over the full page. We generate a universal adversar-
ial mask δ of 20KB by minimizing LFN

YOLO over Dtrain. The overlaid
mask evades detection of all ads in our evaluation set (see Figure 8,
(b)). This attack can be deployed by any publisher, to evade all ads.
The perturbation mask is robust to scrolling and viewport changes
when tested in Google Chrome.

Figure 8 (c) shows a similar attack that overloads the ad-blocker.
The transparent mask is crafted to minimizeLFN

YOLO overDtrain, and
creates many incorrect predictions that coerce the ad-blocker into

abdicating or breaking the site. On all websites, the mask causes
the model to detect abnormally large ads or fail to detect real ads.

These attacks are powerful and can be re-used by any publisher.
Yet, ad-blockers might try to detect certain CSS tricks and disable
them. We thus also propose stealthier attacks tuned to a single
domain. For pages on BBC.com, we create a small perturbation
(40 × 1020 px) that is applied to the white background right below
an ad frame (see Figure 14(b)) and that universally applies to all
pages from that publisher that use a similar layout.

Attack C4: Detection with adversarial honeypots. To detect ad-
blocking, publishers can use honeypots that falsely trigger ad-
blockers [95]. The false positives in Figures 5-6 are innocuous
elements that are falsely classified as ads or ad-disclosures. For
OCR and the model of Hussain et al. [40], generating near-opaque
black elements worked best. As average hashing is invariant to
changes in image intensity, creating false positives for it is trivial.

For page-based ad-blockers, our first attack embeds a perturba-
tion into a small page footer (see Figure 8 (d)). The footer causes
false predictions for 19/20 pages in our evaluation set, and is robust
to a user scrolling over the page. Figure 14 (c) shows a stealth-
ier attack—tailored to bbc.com—that hides a honeypot in the page
header and has 100% success rate across pages from that publisher.

4.3 Attacks against Ad-Blocker Actions
Ad-blockers usually run at a higher privilege level than any web
page. They are generally not affected by the same-origin policy and
can read and write any part of any web page that the user visits.

The main privileged action taken by an ad-blocker is altering of
web content. Attackers exploit this action when using honeypots
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to detect ad-blockers. But triggering ad-blocker actions can have
more pernicious effects. Below, we describe two attacks that can
be deployed by arbitrary content creators (e.g., a Facebook user) to
trigger malicious ad-blocker actions in other users’ browsers.

Attack A1: Cross-boundary blocking. In this attack (see Figure 1)
a malicious user (Jerry) uploads adversarial content that triggers
a Sentinel-like ad-blocker into marking content of another user
(Tom) as and ad. This “cross-boundary blocking attack” hijacks the
ad-blocker’s elevated privilege to bypass web security boundaries.

To mount the attack, we optimally perturb Jerry’s content so
as to maximize the model’s confidence in a box that covers Tom’s
content. The attack works because object-detector models such
as YOLOv3 [72] predict bounding boxes by taking into account
the full input image—a design feature which increases accuracy
and speed [70]. As a result, adversarial content can affect bounding
boxes in arbitrary image regions. Our attack reveals an inherent vul-
nerability of any object detector applied to web content—wherein
the model’s segmentation misaligns with web-security boundaries.

Attack A2: Cross-origin web requests. In addition to searching for
the “Sponsored” text on Facebook, Ad-Highlighter [82] uses the
fact that the ad-disclosure contains a link to Facebook’s ad-policy
page as an additional signal. Specifically, Ad-Highlighter parses
the DOM in search for links containing the text “Sponsored” and
determines whether the link leads to Facebook’s ad statement page
by simulating a user-click on the link and following any redirects. 5

These techniques are dangerous and enable serious vulnerabil-
ities (e.g., CSRF [66], DDoS [67] or click-fraud [22]) with conse-
quences extending beyond ad-blocking. Clicking links on a user’s
behalf is a highly privileged action, which can thus be exploited by
any party that can add links in a page, which can include arbitrary
website users. To illustrate the dangers of behavioral ad-blocking,
we create a regular Facebook post with an URL to a web page with
title “Sponsored”. Facebook converts this URL into a link which
Ad-Highlighter clicks on. Albeit sound, this attack luckily and co-
incidentally fails due to Facebook’s Link Shim, that inspects clicked
links before redirecting the user. Ad-Highlighter fails to follow this
particular redirection thus inadvertently preventing the attack. Yet,
this also means that Facebook could use the same layer of indirec-
tion for their “Sponsored” link. If the behavioral ad-blocking idea
were to be extended to disclosure cues on other websites (e.g., the
AdChoices logo), such attacks would also be easily mounted. Pre-
filtering inputs passed to a behavioral layer does not help. Either the
filter is perfect, in which case no extra step is required—or its false
positives can be exploited to trigger the behavioral component.

4.4 Attacks against Page Segmentation
In this Section, we describe attacks targeting the ad-blocker’s page
segmentation logic, in an effort to evade the ad-blocker or ex-
haust its resources. These attacks use standard Web techniques
(e.g., HTML obfuscation) and are already applied in an ongoing
arms race between Facebook and uBlock [88]. We argue that to

5Ad-Highlighter simulates clicks because Facebook used to resolve links server-side
(the ad-disclosure used to link to www.facebook.com/#). Facebook recently changed its
obfuscation of the link in post captions. It now uses an empty <a> tag that is populated
using JavaScript during the click event. This change fools Ad-Highlighter and still
requires an ad-blocker to simulate a potentially dangerous click to uncover the link.

<a><span >
<span class="c1">Sp </span >
<span class="c2">S</span >
<span class="c1">on </span >
<span class="c2">S</span >
<span class="c1">so </span >
<span class="c2">S</span >
<span class="c1">red </span >
<span class="c2">S</span >
</span ></a>

.c2 { font-size: 0; }

Figure 9: CSS Obfuscation on Facebook. (Left) HTML and
CSS that render Facebook’s “Sponsored” caption. (Right) A
proof-of-concept where the ad-disclosure is an adversarial
image that Ad-Highlighter’s OCR decodes as “8parisared”.

Figure 10: Image Sprites of the AdChoices Logo. Image-
sprites are sets of images stored in a single file, and seg-
mented using CSS rules. For example, the left sprite allows
to smoothly switch from the icon to the full logo on hover.
The right sprite is used by cnn.com to load a variety of logos
used on the page in a single request.

escape the arms race caused by these segmentation attacks, percep-
tual ad-blockers have to operate over rendered web-content (i.e.,
frame or page-based approaches), which in turn increases the at-
tack surface for adversarial examples on the ad-blocker’s visual
classifier.

Attack S1: DOM obfuscation. These attacks aim to fool the ad-
blocker into feeding ambiguous inputs to its classifier. They ex-
ploit some of the same limitations that affect traditional filter lists,
and can also be applied to element-based ad-blockers that rely on
computer-vision classifiers, such as Ad-Highlighter.

DOM obfuscation is exemplified by Facebook’s continuous ef-
forts to regularly alter the HTML code of its “Sponsored” caption
(see Figure 9). Facebook deploys a variety of CSS tricks to obfuscate
the caption, and simultaneously embeds hidden ad-disclosure hon-
eypots within regular user posts in an effort to deliberately cause
site-breakage for ad-block users. Facebook’s obfuscation attempts
routinely fool uBlock [88] as well as Ad-Highlighter.

If ad-blockers adopt computer-vision techniques as in Ad-
Highlighter, DOM obfuscation attacks still apply if ad-blockers
assume a direct correspondence between elements in the DOM
and their visual representation when rendered. For example, Ad-
Highlighter assumes that all img tags in the DOM are shown as is,
thereby ignoring potentially complex CSS transformations applied
when rendering HTML. This can cause the downstream classifier
to process images with unexpected properties.

Ad networks already use CSS rules that significantly alter ren-
dered ad-disclosures. Figure 10 shows two AdChoices logos found
on cnn.com. These are image-sprites—multiple images included in
a single file to minimize HTTP requests—that are cropped using
CSS to display only a single logo at a time. Image-sprites highlight
an exploitable blind-spot in element-based perceptual ad-blockers—
e.g., the logos in Figure 10 fool Ad-Highlighter [82]. Images can
also be fragmented into multiple elements. The ad-blocker then

www.facebook.com/#
cnn.com


has to stitch them together to correctly recognize the image (e.g.,
Google’s AdChoices logo consists of two separate SVG tags).

Finally, the rules used by ad-blockers to link ad-disclosures back
to the corresponding ad frame can also be targeted. For example,
on pages with an integrated ad network, such as Facebook, the
publisher could place ad-disclosures (i.e., “Sponsored” links) and
ads at arbitrary places in the DOM and re-position them using CSS.

Frame-based and page-based ad-blockers bypass all these issues
by operating on already-rendered content.

Attack S2: Over-segmentation. Here the publisher injects a large
number of elements into the DOM (say, by generating dummy im-
ages in JavaScript) to overwhelm an ad-blocker’s classifier with
inputs and exhaust its resources. In response, ad-blockers would
have to aggressively filter DOM elements—with the risk of these
filters’ blind spots being exploited to evade or detect ad-blocking.
The viability of this attack may seem unclear, as users might blame
publishers for high page-load latency resulting from an overloaded
ad-blocker. Yet, Facebook’s efforts to cause site-breakage by embed-
ding ad-disclosure honeypots within all regular user posts demon-
strates that some ad networks may result to such tactics.

4.5 Attacks against Training
For classifiers that are trained on labeled images, the data collection
and training phase can be vulnerable to data poisoning attacks (D1)—
especially when crowdsourced as with Sentinel [10]. We describe
these attacks for completeness, but refrain from a detailed evalua-
tion as the test-time attacks described in Sections 4.2 through 4.4
are conceptually more interesting and more broadly applicable.

In these attacks, the adversary joins the crowdsourced data col-
lection to submit maliciously crafted images that adversely influ-
ence the training process. For example, malicious training data can
contain visual backdoors [20], which are later used to evade the
ad-blocker. The ad-blocker developer cannot tell if a client is con-
tributing real data for training or malicious samples. Similar attacks
against crowdsourced filter lists such as Easylist are theoretically
possible. A malicious user could propose changes to filter lists that
degrade their utility. However, new filters are easily interpreted and
vetted before inclusion—a property not shared by visual classifiers.

Sentinel’s crowdsourced data collection of users’ Facebook feeds
also raises serious privacy concerns, as a deployed model might
leak parts of its training data [30, 77].

5 DISCUSSION
We have presented multiple attacks to evade, detect and abuse
recently proposed and deployed perceptual ad-blockers. We now
provide an in-depth analysis of our results.

5.1 A New Arms Race
Our results indicate that perceptual ad-blocking will either perpetu-
ate the arms race of filter lists, or replace it with an arms race around
adversarial examples. Where perceptual ad-blockers that rely heav-
ily on page markup (e.g., as in uBlock [7] or Ad-Highlighter [82])
remain vulnerable to continuous markup obfuscation [88], visual
classification of rendered web content (as in Sentinel [10] or Perci-
val [84]) inherits a crucial weakness of current visual classifiers—
adversarial examples [33, 83].

The past years have seen considerable work towards mitigat-
ing the threat of adversarial examples. Yet, defenses are either
broken by improved attacks [11, 17], or limited to restricted adver-
saries [21, 45, 53, 69, 86]. Even if ad-block developers proactively
detect adversarial perturbations and blacklist them (e.g., using ad-
versarial training [53, 83] to fine-tune their classifier), adversaries
can simply regenerate new attacks (or use slightly different pertur-
bations [76]).

5.2 Strategic Advantage of Adversaries and
Lack of Defenses

Our attacks with adversarial examples are not a quid pro quo step in
this new arms race, but indicate a pessimistic outcome for percep-
tual ad-blocking. Indeed, these ad-blockers operate in essentially
the worst threat model for visual classifiers. Their adversaries have
access to the ad-blockers’ code and prepare offline digital adversar-
ial examples to trigger both false-negatives and false-positives in
the ad-blocker’s online (and time constrained) decision making.

Even if ad-blockers obfuscate their code, black-box attacks [41]
or model stealing [63, 87] still apply. Randomizing predictions or de-
ploying multiple classifiers is also ineffective [11, 37]. For example,
some of the adversarial examples in Figure 5 work for both OCR
and SIFT despite being targeted at a single one of these classifiers.

The severity of the above threat model is apparent when consid-
ering existing defenses to adversarial examples. For instance, adver-
sarial training [53, 83] assumes restricted adversaries (e.g., limited
to ℓ∞ perturbations), and breaks under other attacks [27, 76, 85]. Ro-
bustness to adversarial false positives (or “garbage examples” [33])
is even harder. Even if ad-blockers proactively re-train on adversar-
ial examples deployed by publishers and ad-networks, training has
a much higher cost than the attack generation and is unlikely to
generalize well to new perturbations [74]. Detecting adversarial ex-
amples [34, 55] (also an unsolved problem [16]) is insufficient as Ad-
blockers face both adversarial false-positives and false-negatives,
so merely detecting an attack does not aid in decision-making. A
few recently proposed defenses achieve promising results in some
restricted threat models, e.g., black-box attacks [19] or physically-
realizable attacks [21]. These defenses are currently inapplicable in
the threat model of perceptual ad-blocking, but might ultimately
reveal new insights for building more robust models.

Our attacks also apply if perceptual ad-blocking is used as a
complement to filter lists rather than as a standalone approach.
Ad-blockers that combine both types of techniques are vulnerable
to attacks targeting either. If perceptual ad-blocking is only used
passively (e.g., to aid in the maintenance of filter lists, by logging
potential ads that filter lists miss), the ad-blocker’s adversaries still
have incentive to attack to delay the detection of new ads.

This stringent threat model above also applies to ML-based ad-
blockers that use URL and DOM features [14, 36, 43], which have
not been evaluated against adaptive white-box attacks.

5.3 Beyond the Web and Vision.
The use of sensory signals for ad-blocking has been considered
outside the Web, e.g., AdblockRadio detects ads in radio streams
using neural networks [2]. Emerging technologies such as virtual
reality [62], voice assistants [44] and smart TVs [59] are posited to



Figure 11: Original and Adversarial Audio Waveforms.
Shows a ten second segment of an ad audio waveform (thick
blue) overlaid with its adversarial perturbation (thin red).

become platforms for large-scale targeted advertising, and percep-
tual ad-blockers might emerge in those domains as well.

The threats described in this paper—and adversarial examples in
particular—are likely to also affect perceptual ad-blockers that oper-
ate outside the vision domain. To illustrate, we take a closer look at
AdblockRadio, a radio client that continuously classifies short audio
segments as speech, music or ads based on spectral characteristics.
When ads are detected, the radio lowers the volume or switches
stations. Radio ad-blockers face a different threat model than on
the Web. All content, including ads, is served as raw audio from a
single origin, so filter lists are useless. The publisher cannot run any
client-side code, so ad-block detection is also impossible. Yet, the
threat of adversarial examples does apply. Indeed, we show that by
adding near-inaudible6 noise to the ad content in AdblockRadio’s
demo podcast, the perturbed audio stream evades ad detection.

Concretely, AdblockRadio takes as input a raw audio stream,
computes the Mel-frequency cepstral coefficients (MFCCs), and
splits them into non-overlapping windows of 4 seconds. Each seg-
ment is fed into a standard feed-forward classifier that predicts
whether the segment corresponds to music, speech, or an ad. A
post-processing phase merges all consecutive segments of a same
class, and removes ad-segments. As the whole prediction pipeline
is differentiable, crafting adversarial examples is straightforward:
we use projected gradient descent (in the l∞-norm) to modify the
raw ad audio segments so as to minimize the classifier’s confidence
in the ad class. The resulting audio stream fully bypasses Adblock-
Radio’s ad detection. An ad segment in the original and adversarial
audio waveforms is displayed in Figure 11.

6 RELATEDWORK
Our work bridges two areas of computer security research—studies
of the online ad-ecosystem and associated ad-blocking arms race,
and adversarial examples for ML models.

Behavioral advertising. A 2015 study found that 22% of web users
use ad-blockers, mainly due to intrusive behavior [46, 68, 78, 89].
The use of ad-disclosures—which some perceptual ad-blockers rely
on—is rising. On the Alexa top 500, the fraction of ads with an
AdChoices logo has grown from 10% to 60% in five years [38, 81].
Yet, less than 27% of users understand the logo’s meaning [50, 89].

Ad-blocking. Limitations of filter lists are well-studied [54, 91,
92]. Many new ad-blocker designs (e.g., [14, 36, 43]) replace hard-
coded rules with ML models trained on similar features (e.g.,

6The perturbed audio stream has a signal-to-noise ratio of 37 dB.

markup [23] or URLs [47]). Many of these works limit their secu-
rity analysis to non-adaptive attacks. Ours is the first to rigorously
evaluate ML-based ad-blockers.

Ad-block detection has spawned an arms race around anti-ad-
blocking scripts [57, 58, 60]. Iqbal et al. [42] and Zhu et al. [95] detect
anti-ad-blocking using code analysis and differential-testing. Storey
et al. [81] build stealthy ad-blockers that aim to hide from client-side
scripts, a challenging task in current browsers (see Appendix A).

Adversarial examples. Our work is the first to apply adversarial
examples in a real-world web-security context. Prior work attacked
image classifiers [17, 33, 64, 83], malware [35], speech recogni-
tion [18] and others. We make use of white-box attacks on visual
classifiers [17, 53], sequential models [18, 79] and object detec-
tors [28]. We show that black-box attacks [41] are a generic alter-
native to prior attacks on SIFT [39].

Attacking page-based ad-blockers introduce novel challenges.
Perturbing HTML bares similarities to discrete domain attacks, e.g.,
PDF malware detection [80]. The ad-blocker’s inputs can also be
controlled by multiple entities, a constraint reminiscent of those
that arise in physical-world attacks [12, 28, 29, 49, 75].

Preventing adversarial examples is an open problem. Adversarial
training is a viable strategy [33, 49, 53, 86], but considers a less
stringent threat model than perceptual ad-blockers.

7 CONCLUSION
We have presented a comprehensive security evaluation of per-
ceptual ad-blocking. To understand the design space of these re-
cently deployed systems, we have derived a unified architecture
that incorporates and extends prior work. Our analysis of this ar-
chitecture has revealed multiple vulnerabilities at every stage of
the visual ad-classification pipeline. We have shown that unless
perceptual ad-blockers operate over rendered web content, the
arms race around page markup obfuscation will likely carry on.
Conversely, we have demonstrated that current visual ad-classifiers
are inherently vulnerable to adversarial examples—the first applica-
tion of these attacks to web-security. We have shown how to craft
near-imperceptible perturbation for ads, ad-disclosures, and native
content, in order to evade or detect ad-blocking with seven different
classifiers. Finally, we have discovered a powerful attack on page-
based ad-blockers, wherein a malicious user fools the model into
blocking content supposedly protected by web-security boundaries.

Our aim was to highlight the fundamental vulnerabilities that
perceptual ad-blockers inherit from existing image classifiers. As
long as defenses to adversarial examples are elusive, perceptual ad-
blockers will be dragged into a new arms race in which they start
from a precariously disadvantaged position—given the stringent
threat model that they must survive.
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A THE AD-BLOCK DETECTION ARMS RACE
Many publishers actively detect the presence of ad-blockers [42,
58, 60] and take actions ranging from user warnings to service dis-
abling for ad-block users. Ad-block detection operates among three
main axes [81]: (1) detecting absence of known ads; (2) injecting
“honeypots” and detecting that they are mistakenly blocked, and
(3) detecting ad-blocking code through side-channels (e.g., timing).

Perceptual ad-blockers cannot be detected server-side as they
do not alter any web requests. To remain stealthy, a perceptual
ad-blocker thus only needs to fool publisher JavaScript code into
observing an unmodified DOM [81]. This challenge is surmountable
for native in-browser ad-blockers, as these can simply modify the
user’s view without affecting the DOM. Yet, the main ad-blockers
today are browser extensions, which do not have such high privilege
levels and share the same JavaScript API as client scripts. Storey et
al. [81] suggest the following arms race for a stealthy ad-blocker:
(1) The ad-blocker modifies the DOM to block or mask detected ads

and honeypots. It then overwrites the JavaScript DOM traversal
API (e.g., with JavaScript proxies) so that the publisher’s code
sees the original DOM.

(2) The publisher inspects changes to global APIs by using the
toString() method to unveil changes on the function.7

(3) The ad-blocker overwrites the universal toString() method
used by all JavaScript functions, so that it always returns the
same value as for a non-blocked website.

We argue that this is not the end of the arms race. We sketch
three strategies to detect or reverse the above ad-blocker modifi-
cations. Preventing the attacks below requires the ad-blocker to
emulate a much larger set of JavaScript APIs, parts-of-which appear
inaccessible to browser extensions.
(1) Borrowing native functions. A publisher creates an iframe,

which gets a new JavaScript environment, and extracts a “fresh”
native function (e.g., toString) from it to unveil changes. In

7Even proxied functions can be distinguished from their native counterparts: https:
//bugs.chromium.org/p/v8/issues/detail?id=7484.
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turn, the ad-blocker has to intercept all iframe creations and
re-apply the same changes.

(2) Detecting non-native functions. The toString method is
native (i.e., implemented by the browser). Some properties differ
between native and non-native functions and do not appear
to be mockable (e.g., setting a native function’s arguments
property raises an error whereas this property can be set for
JavaScript functions).8

(3) Timing. If the above attacks are solved by emulating large
portions of native JavaScript, the performance overhead may
lead to a strong timing side-channel.

B TRAINING A PAGE-BASED AD-BLOCKER
As the trained neural network of Sentinel [10] is not available for
an evaluation, we trained one for the analysis of Section 4. We used
the same architecture as Sentinel, i.e., YOLO (v3) [70–72].

B.1 Data Collection
YOLO is an object detection network. Given an image, it returns a
set of bounding boxes for each detected object. To train and eval-
uate YOLO, we created a dataset of labeled web page screenshots
where each label encodes coordinates and dimensions of an ad on
the page. We created the dataset with an ad-hoc automated system
that operates in two steps. First, given a URL, it retrieves the web
page and identifies the position of ads in the page using filter lists
of traditional ad-blockers. Then, our system generates a web page
template where ads are replaced with placeholder boxes. The con-
cept of web page templates is convenient as it enables us to create
multiple screenshots from the same web page with different ads, a
form of data-augmentation. Second, from each web page template,
we derive a number of images by placing ads on the template.

Web pages. We acquired web pages by retrieving the URLs of
the top 30 news websites of each of the G20 nations listed in
allyoucanread.com. For each news site, we searched for the RSS
feed URLs and discarded sites with no RSS feeds. The total number
of RSS feed URLs is 143. We visited each RSS feed URL daily and
fetched the URLs to the daily news.

Template generation. Given a URL of a news article, we gener-
ate a page template using a modified HTTP proxy that matches
incoming HTTP requests against traditional ad-blocker filter lists,
i.e., Easylist [3] and Ghostery [5]. The proxy replaces ad contents
with monochrome boxes using a unique color for each ad. These
boxes are placeholders that we use to insert new ads. We manually
inspected all templates generated during this step to remove pages
with a broken layout (caused by filter lists’ false positives) or pages
whose ads are still visible (caused by filter lists’ false negatives).

Image generation. From each page template, we generate multi-
ple images by replacing placeholder boxes with ads. We select ads
from the dataset of Hussain et al. [40]. This dataset contains about
8It might be possible to circumvent this issue with a Proxy. Yet, we found that function
Proxies can be distinguished from native functions in Google Chrome via the error
message of a postMessage call—this might be mockable too, but vastly expands the
portion of the JavaScript API to cover.

64K images of ads of variable sizes and ratios. We complemented
the dataset with 136 ads we retrieved online. To insert pictures
inside a template, we follow four strategies:
(1) We directly replace the placeholder with an ad;

(2) We replace the placeholder with an ad, and we also include an
AdChoices logo in the top right corner of the ad;

(3) We augment templates without placeholders by adding a large
ad popup in the page. The page is darkened to highlight the ad;

(4) We insert ads as background of the website, that fully cover the
left- and right-hand margins of the page.

When inserting an ad, we select an image with a similar aspect ratio.
When we cannot find an exact match, we resize the image using
Seam Carving [13], a content-aware image resizing algorithm that
minimizes image distortion. To avoid overfitting during training,
we limited the number of times each ad image can be used to 20.

B.2 Evaluation and Results
Datasets. The training set contains 2,901 images, of which 2,600

have ads. 1,600 images with ads were obtained with placeholder
replacement, 800 with placeholder replacements with AdChoices
logos, 100 with background ads, and 100 with interstitials.

The evaluation set contains a total of 2,684 images—2,585 with
ads and 99 without ads. These are 1,595 images with placeholder
replacement, 790 images with placeholder replacement with Ad-
Choices logos, 100 images with background ads, and 100 images
with interstitials. We also compiled a second evaluation set from 10
domains that were not used for training (this set is different from
the one used to evaluate attacks in Section 4). For each domain,
we took a screenshot of the front page and four screenshots of
different subpages, resulting in 50 screenshots overall with a total
of 75 advertisements. We trained using the default configuration of
YOLOv3 [72], adapted for a unary classification task.

Accuracy and performance. We tested our model against both
evaluation sets. The model achieved the best results after 3,600
training iterations. In the first set, our model achieved a mean
average precision of 90.88%, an average intersect of union of 84.23%
and an F1-score of 0.96. On the second set, our model achieved a
mean average precision of 87.28%, an average intersect of union of
77.37% and an F1-score of 0.85. A video demonstrating our model
detecting ads on five never seen websites is available at https://
github.com/ftramer/ad-versarial/blob/master/videos.

We evaluate performance of the model in TensorFlow 1.8.0 with
Intel AVX support. On an Intel Core i7-6700 CPU the prediction for
a single image took 650ms.

Inspecting our model. We conduct a preliminary study of the
inner-workings of our neural network. By inspecting the model’s
activation map on different inputs (see Figure 12), we find that the
model mainly focuses on the layout of ads in a page, rather than
their visual content. This shows that our ad-blocker detects ads
using very different visual signals than humans. This raises an
intriguing question about the Sentinel model of Adblock Plus [10],
which was trained solely on Facebook data, where ads are visually
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Figure 12: Activation Maps of our Ad Detection Model. The
most salient features appear to be the surroundings of ads
rather than their visual content.

close to the website’s native content. Thus, it seems less likely that
Sentinel would have learned to detect ads using layout information.

To generate the map in Figure 12, we compute the absolute value
of the gradient of the network’s output with respect to every input
pixel, and apply a smoothing Gaussian kernel over the resulting
image. The gradient map is then overlaid on the original input.

C EXTRA TABLES AND FIGURES

(a) Page displayed in Chromium. (b) Page displayed in Percival.

Figure 13: Attack on the Percival Browser from [84]. On
the left, a dummy web page is displayed in the standard
Chromium browser with two ads (top), an adversarially per-
turbed ad (middle) and two adversarial opaque boxes (bot-
tom). On the right, the same page is displayed in the Perci-
val browser. The two unperturbed ads on top are correctly
blocked, but the adversarial ad evades detection, and the ad-
versarial opaque boxes are mistakenly blocked.

Table 3: Evaluation Data for Adversarial Examples. We col-
lect images, frames and screenshots from the Alexa top ten
news websites that use the AdChoices standard (we exclude
news.google.com and shutterstock.com which contain no
ads on their front-page). For each page, we extract all im-
ages below 50 KB, all iframes, and take two screenshots (the
front page and an article) of the user’s viewport, and report
the number of visible ads in these.

Images Iframes Visible
Website Total AdChoices Total Ads AdChoices Ads
reddit.com 70 2 2 2 2 2
cnn.com 36 7 7 5 2 3
nytimes.com 89 4 3 3 3 2
theguardian.com 75 4 8 3 3 3
indiatimes.com 125 4 5 5 4 3
weather.com 144 5 11 7 3 3
news.yahoo.com 100 5 3 3 2 3
washingtonpost.com 40 1 5 2 1 3
foxnews.com 96 5 6 5 4 4
huffingtonpost.com 90 4 9 4 5† 4
Total 865 41 59 39 29 30
† One AdChoices logo appears in two rendered iframes laid on top of each other.

(a) Original Page: The ad banner is correctly detected.

(b) Attack C3-C4: The publisher perturbs the white background be-
neath the ad to evade ad-blocking (C4). Alternatively, an ad network
adds a universal mask on the ad (C3, not displayed here for brevity).
In both cases, the perturbation is invisible to the user.

(c) Attack C1: The publisher adds a honeypot element to the page
header (top-right) to detect an ad-blocker.

Figure 14: Universal Adversarial Examples for Page-Based
Ad-Blockers on BBC.com. Examples of evasion attacks C3-
C4 and detection attack C1 (see Section 4.2).
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